ﻻ يوجد ملخص باللغة العربية
Two-dimensional (2D) topological electronic insulators are known to give rise to gapless edge modes, which underlie low energy dynamics, including electrical and thermal transport. This has been thoroughly investigated in the context of quantum Hall phases, and time-reversal invariant topological insulators. Here we study the edge of a 2D, topologically trivial insulating phase, as a function of the strength of the electronic interactions and the steepness of the confining potential. For sufficiently smooth confining potentials, alternating compressible and incompressible stripes appear at the edge. Our findings signal the emergence of gapless edge modes which may give rise to finite conductance at the edge. This would suggest a novel scenario of a non-topological metal-insulator transition in clean 2D systems. The incompressible stripes appear at commensurate fillings and may exhibit broken translational invariance along the edge in the form of charge density wave ordering. These are separated by structureless compressible stripes.
We consider a model proposed before for a time-reversal-invariant topological superconductor (TRITOPS) which contains a hopping term $t$, a chemical potential $mu$, an extended $s$-wave pairing $Delta$ and spin-orbit coupling $lambda$. We show that f
We study the scattering of the Dirac electrons by a point-like nonmagnetic impurity on the surface of a topological insulator, driven by a time-periodic gate voltage. It is found that, due to the doublet degenerate crossing points of different Floque
Here we describe how certain classes of two dimensional topological insulators, including the CdTe$/$HgTe quantum wells, display a new type of optical activity in two dimensions similar to the magneto-optical Kerr effect in the quantum Hall effect. T
Protected edge modes are the cornerstone of topological states of matter. The simplest example is provided by the integer quantum Hall state at Landau level filling unity, which should feature a single chiral mode carrying electronic excitations. In
The relaxation of a classical spin, exchange coupled to the local magnetic moment at an edge site of the one-dimensional spinful Su-Schrieffer-Heeger model is studied numerically by solving the full set of equations of motion. A Lindblad coupling of