ﻻ يوجد ملخص باللغة العربية
We unveil a long-standing problem in the prevailing co-saliency detection systems: there is indeed inconsistency between training and testing. Constructing a high-quality co-saliency detection dataset involves time-consuming and labor-intensive pixel-level labeling, which has forced most recent works to rely instead on semantic segmentation or saliency detection datasets for training. However, the lack of proper co-saliency and the absence of multiple foreground objects in these datasets can lead to spurious variations and inherent biases learned by models. To tackle this, we introduce the idea of counterfactual training through context adjustment and propose a cost-free group-cut-paste (GCP) procedure to leverage off-the-shelf images and synthesize new samples. Following GCP, we collect a novel dataset called Context Adjustment Training (CAT). CAT consists of 33,500 images, which is four times larger than the current co-saliency detection datasets. All samples are automatically annotated with high-quality mask annotations, object categories, and edge maps. Extensive experiments on recent benchmarks are conducted, show that CAT can improve various state-of-the-art models by a large margin (5% ~ 25%). We hope that the scale, diversity, and quality of our dataset can benefit researchers in this area and beyond. Our dataset will be publicly accessible through our project page.
We propose a new approach to visualize saliency maps for deep neural network models and apply it to deep reinforcement learning agents trained on Atari environments. Our method adds an attention module that we call FLS (Free Lunch Saliency) to the fe
Co-salient object detection (CoSOD) has recently achieved significant progress and played a key role in retrieval-related tasks. However, it inevitably poses an entirely new safety and security issue, i.e., highly personal and sensitive content can p
Image retargeting is the task of making images capable of being displayed on screens with different sizes. This work should be done so that high-level visual information and low-level features such as texture remain as intact as possible to the human
A precondition for a No Free Lunch theorem is evaluation with a loss function which does not assume a priori superiority of some outputs over others. A previous result for community detection by Peel et al. (2017) relies on a mismatch between the los
Object proposals greatly benefit object detection task in recent state-of-the-art works. However, the existing object proposals usually have low localization accuracy at high intersection over union threshold. To address it, we apply saliency detecti