ﻻ يوجد ملخص باللغة العربية
The Bethe-Salpeter amplitude $Phi(k,p)$ is expressed, by means of the Nakanishi integral representation, via a smooth function $g(gamma,z)$. This function satisfies a canonical equation $g=Ng$. However, calculations of the kernel $N$ in this equation, presented previously, were restricted to one-boson exchange and, depending on method, dealt with complex multivalued functions. Although these difficulties are surmountable, but in practice, they complicate finding the unambiguous result. In the present work, an unambiguous expression for the kernel $N$ in terms of real functions is derived. For the one-boson scalar exchange, the explicit formula for $N$ is found. With this equation and kernel, the binding energies, calculated previously, are reproduced. Their finding, as well as calculation of the Bethe-Salpeter amplitude in the Minkowski space, become not more difficult than in the Euclidean one. The method can be generalized to any kernel given by irreducible Feynman graph. This generalization is illustrated by example of the cross-ladder kernel.
The bound state Bethe-Salpeter amplitude was expressed by Nakanishi in terms of a smooth weight function g. By using the generalized Stieltjes transform, we derive an integral equation for the Nakanishi function g for a bound state case. It has the s
The bound state Bethe-Salpeter amplitude was expressed by Nakanishi using a two-dimensional integral representation, in terms of a smooth weight function $g$, which carries the detailed dynamical information. A similar, but one-dimensional, integral
We present a new method for solving the two-body Bethe-Salpeter equation in Minkowski space. It is based on the Nakanishi integral representation of the Bethe-Salpeter amplitude and on subsequent projection of the equation on the light-front plane. T
The data on the proton form factors in the time-like region from the BaBar, BESIII and CMD-3 Collaborations are examined to have coherent pieces of information on the proton structure. Oscillations in the annihilation cross section, previously observ
We present a calculation of the electromagnetic form factors of the $rho^+$ meson. Our formalism is based on the point-form of relativistic quantum mechanics. Electron-$rho$-meson scattering is formulated as a coupled-channel problem for a Bakamjian-