ﻻ يوجد ملخص باللغة العربية
State-of-the-art deep neural networks (DNNs) have been proved to have excellent performance on unsupervised domain adaption (UDA). However, recent work shows that DNNs perform poorly when being attacked by adversarial samples, where these attacks are implemented by simply adding small disturbances to the original images. Although plenty of work has focused on this, as far as we know, there is no systematic research on the robustness of unsupervised domain adaption model. Hence, we discuss the robustness of unsupervised domain adaption against adversarial attacking for the first time. We benchmark various settings of adversarial attack and defense in domain adaption, and propose a cross domain attack method based on pseudo label. Most importantly, we analyze the impact of different datasets, models, attack methods and defense methods. Directly, our work proves the limited robustness of unsupervised domain adaptation model, and we hope our work may facilitate the community to pay more attention to improve the robustness of the model against attacking.
In this paper, we explore the open-domain sketch-to-photo translation, which aims to synthesize a realistic photo from a freehand sketch with its class label, even if the sketches of that class are missing in the training data. It is challenging due
Attention-based networks have achieved state-of-the-art performance in many computer vision tasks, such as image classification. Unlike Convolutional Neural Network (CNN), the major part of the vanilla Vision Transformer (ViT) is the attention block
Despite the success of convolutional neural networks (CNNs) in many computer vision and image analysis tasks, they remain vulnerable against so-called adversarial attacks: Small, crafted perturbations in the input images can lead to false predictions
To remove the effects of adversarial perturbations, preprocessing defenses such as pixel discretization are appealing due to their simplicity but have so far been shown to be ineffective except on simple datasets such as MNIST, leading to the belief
The increasing computational demand of Deep Learning has propelled research in special-purpose inference accelerators based on emerging non-volatile memory (NVM) technologies. Such NVM crossbars promise fast and energy-efficient in-situ Matrix Vector