ﻻ يوجد ملخص باللغة العربية
In neural circuits, recurrent connectivity plays a crucial role in network function and stability. However, existing recurrent spiking neural networks (RSNNs) are often constructed by random connections without optimization. While RSNNs can produce rich dynamics that are critical for memory formation and learning, systemic architectural optimization of RSNNs is still an opening challenge. We aim to enable systemic design of large RSNNs via a new scalable RSNN architecture and automated architectural optimization. We compose RSNNs based on a layer architecture called Sparsely-Connected Recurrent Motif Layer (SC-ML) that consists of multiple small recurrent motifs wired together by sparse lateral connections. The small size of the motifs and sparse inter-motif connectivity leads to an RSNN architecture scalable to large network sizes. We further propose a method called Hybrid Risk-Mitigating Architectural Search (HRMAS) to systematically optimize the topology of the proposed recurrent motifs and SC-ML layer architecture. HRMAS is an alternating two-step optimization process by which we mitigate the risk of network instability and performance degradation caused by architectural change by introducing a novel biologically-inspired self-repairing mechanism through intrinsic plasticity. The intrinsic plasticity is introduced to the second step of each HRMAS iteration and acts as unsupervised fast self-adaption to structural and synaptic weight modifications introduced by the first step during the RSNN architectural evolution. To the best of the authors knowledge, this is the first work that performs systematic architectural optimization of RSNNs. Using one speech and three neuromorphic datasets, we demonstrate the significant performance improvement brought by the proposed automated architecture optimization over existing manually-designed RSNNs.
Spiking neural networks (SNNs) well support spatiotemporal learning and energy-efficient event-driven hardware neuromorphic processors. As an important class of SNNs, recurrent spiking neural networks (RSNNs) possess great computational power. Howeve
Spiking recurrent neural networks (RNNs) are a promising tool for solving a wide variety of complex cognitive and motor tasks, due to their rich temporal dynamics and sparse processing. However training spiking RNNs on dedicated neuromorphic hardware
As an important class of spiking neural networks (SNNs), recurrent spiking neural networks (RSNNs) possess great computational power and have been widely used for processing sequential data like audio and text. However, most RSNNs suffer from two pro
We introduce a convolutional recurrent neural network (CRNN) for music tagging. CRNNs take advantage of convolutional neural networks (CNNs) for local feature extraction and recurrent neural networks for temporal summarisation of the extracted featur
In long-term deployments of sensor networks, monitoring the quality of gathered data is a critical issue. Over the time of deployment, sensors are exposed to harsh conditions, causing some of them to fail or to deliver less accurate data. If such a d