ﻻ يوجد ملخص باللغة العربية
More recently, Explainable Artificial Intelligence (XAI) research has shifted to focus on a more pragmatic or naturalistic account of understanding, that is, whether the stakeholders understand the explanation. This point is especially important for research on evaluation methods for XAI systems. Thus, another direction where XAI research can benefit significantly from cognitive science and psychology research is ways to measure understanding of users, responses and attitudes. These measures can be used to quantify explanation quality and as feedback to the XAI system to improve the explanations. The current report aims to propose suitable metrics for evaluating XAI systems from the perspective of the cognitive states and processes of stakeholders. We elaborate on 7 dimensions, i.e., goodness, satisfaction, user understanding, curiosity & engagement, trust & reliance, controllability & interactivity, and learning curve & productivity, together with the recommended subjective and objective psychological measures. We then provide more details about how we can use the recommended measures to evaluate a visual classification XAI system according to the recommended cognitive metrics.
With an increase in deep learning-based methods, the call for explainability of such methods grows, especially in high-stakes decision making areas such as medical image analysis. This survey presents an overview of eXplainable Artificial Intelligenc
In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explai
EXplainable AI (XAI) methods have been proposed to interpret how a deep neural network predicts inputs through model saliency explanations that highlight the parts of the inputs deemed important to arrive a decision at a specific target. However, it
Previous research in Explainable Artificial Intelligence (XAI) suggests that a main aim of explainability approaches is to satisfy specific interests, goals, expectations, needs, and demands regarding artificial systems (we call these stakeholders de
Visualizations themselves have become a data format. Akin to other data formats such as text and images, visualizations are increasingly created, stored, shared, and (re-)used with artificial intelligence (AI) techniques. In this survey, we probe the