ﻻ يوجد ملخص باللغة العربية
Deep learning achieves remarkable performance on pattern recognition, but can be vulnerable to defects of some important properties such as robustness and security. This tutorial is based on a stream of research conducted since the summer of 2018 at a few UK universities, including the University of Liverpool, University of Oxford, Queens University Belfast, University of Lancaster, University of Loughborough, and University of Exeter. The research aims to adapt software engineering methods, in particular software testing methods, to work with machine learning models. Software testing techniques have been successful in identifying software bugs, and helping software developers in validating the software they design and implement. It is for this reason that a few software testing techniques -- such as the MC/DC coverage metric -- have been mandated in industrial standards for safety critical systems, including the ISO26262 for automotive systems and the RTCA DO-178B/C for avionics systems. However, these techniques cannot be directly applied to machine learning models, because the latter are drastically different from traditional software, and their design follows a completely different development life-cycle. As the outcome of this thread of research, the team has developed a series of methods that adapt the software testing techniques to work with a few classes of machine learning models. The latter notably include convolutional neural networks, recurrent neural networks, and random forest. The tools developed from this research are now collected, and publicly released, in a GitHub repository: url{https://github.com/TrustAI/DeepConcolic}, with the BSD 3-Clause licence. This tutorial is to go through the major functionalities of the tools with a few running examples, to exhibit how the developed techniques work, what the results are, and how to interpret them.
We distinguish two general modes of testing for Deep Neural Networks (DNNs): Offline testing where DNNs are tested as individual units based on test datasets obtained without involving the DNNs under test, and online testing where DNNs are embedded i
The success of several constraint-based modeling languages such as OPL, ZINC, or COMET, appeals for better software engineering practices, particularly in the testing phase. This paper introduces a testing framework enabling automated test case gener
This note concerns a search for publications in which the pragmatic concept of a test as conducted in the practice of software testing is formalized, a theory about software testing based on such a formalization is presented or it is demonstrated on
Random testing (RT) is a well-studied testing method that has been widely applied to the testing of many applications, including embedded software systems, SQL database systems, and Android applications. Adaptive random testing (ART) aims to enhance
This volume contains the proceedings of the Eighth Workshop on Model-Based Testing (MBT 2013), which was held on March 17, 2013 in Rome, Italy, as a satellite event of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013. T