MCEM and SAEM Algorithms for Geostatistical Models under Preferential Sampling


الملخص بالإنكليزية

The problem of preferential sampling in geostatistics arises when the choise of location to be sampled is made with information about the phenomena in the study. The geostatistical model under preferential sampling deals with this problem, but parameter estimation is challenging because the likelihood function has no closed form. We developed an MCEM and an SAEM algorithm for finding the maximum likelihood estimators of parameters of the model and compared our methodology with the existing ones: Monte Carlo likelihood approximation and Laplace approximation. Simulated studies were realized to assess the quality of the proposed methods and showed good parameter estimation and prediction in preferential sampling. Finally, we illustrate our findings on the well known moss data from Galicia.

تحميل البحث