ﻻ يوجد ملخص باللغة العربية
After the previous discovery of MgC$_3$N and MgC$_4$H in IRC+10216, a deeper Q-band (31.0-50.3 GHz) integration on this source had revealed two additional series of harmonically related doublets that we assigned on the basis of quantum mechanical calculations to the larger radicals MgC$_5$N and MgC$_6$H. The results presented here extend and confirm previous results on magnesium-bearing molecules in IRC,+10216. We derived column densities of (4.7$pm$1.3)$times$10$^{12}$ for MgC$_5$N and (2.0$pm$0.9)$times$10$^{13}$ for MgC$_6$H, which imply that MgC$_5$N/MgC$_3$N=0.5 and MgC$_6$H/MgC$_4$H = 0.9. Therefore, MgC$_5$N and MgC$_6$H are present with column densities not so different from those of the immediately shorter analogs. The synthesis of these large magnesium cyanides and acetylides in IRC+10216 can be explained for their shorter counterparts by a two-step process initiated by the radiative association of Mg$^+$ with large cyanopolyynes and polyynes, which are still quite abundant in this source, followed by the dissociative recombination of the ionic complexes.
The evidence for benzonitrile (C$_6$H$_5$CN}) in the starless cloud core TMC-1 makes high-resolution studies of other aromatic nitriles and their ring-chain derivatives especially timely. One such species is phenylpropiolonitrile (3-phenyl-2-propynen
We report the detection in IRC+10216 of lines of HNC $J$=3-2 pertaining to 9 excited vibrational states with energies up to $sim$5300 K. The spectrum, observed with ALMA, also shows a surprising large number of narrow, unidentified lines that arise i
A single dish monitoring of millimeter maser lines SiS J=14-13 and HCN nu_2 = 1^f J=3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5%~30% are found for eight molecular
A new chemical model is presented for the carbon-rich circumstellar envelope of the AGB star IRC+10216. The model includes shells of matter with densities that are enhanced relative to the surrounding circumstellar medium. The chemical model uses an
The J,K = 1,0-0,0 rotational transition of phosphine (PH3) at 267 GHz has been tentatively identified with a T_MB = 40 mK spectral line observed with the IRAM 30-m telescope in the C-star envelope IRC+10216. A radiative transfer model has been used t