ﻻ يوجد ملخص باللغة العربية
In this paper we consider the gradient flow of the following Ginzburg-Landau type energy [ F_varepsilon(u) := frac{1}{2}int_{M}vert D uvert_g^2 +frac{1}{2varepsilon^2}left(vert uvert_g^2-1right)^2mathrm{vol}_g. ] This energy is defined on tangent vector fields on a $2$-dimensional closed and oriented Riemannian manifold $M$ (here $D$ stands for the covariant derivative) and depends on a small parameter $varepsilon>0$. If the energy satisfies proper bounds, when $varepsilonto 0$ the second term forces the vector fields to have unit length. However, due to the incompatibility for vector fields on $M$ between the Sobolev regularity and the unit norm constraint, critical points of $F_varepsilon$ tend to generate a finite number of singular points (called vortices) having non-zero index (when the Euler characteristic is non-zero). These types of problems have been extensively analyzed in a recent paper by R. Ignat and R. Jerrard. As in Euclidean case, the position of the vortices is ruled by the so-called renormalized energy. In this paper we are interested in the dynamics of vortices. We rigorously prove that the vortices move according to the gradient flow of the renormalized energy, which is the limit behavior when $varepsilonto 0$ of the gradient flow of the Ginzburg-Landau energy.
We have extended Brandts method for accurate, efficient calculations within Ginzburg-Landau theory for periodic vortex lattices at arbitrary mean induction to lattices of doubly quantized vortices.
We study Gamma-convergence of graph based Ginzburg-Landau functionals, both the limit for zero diffusive interface parameter epsilon->0 and the limit for infinite nodes in the graph m -> infinity. For general graphs we prove that in the limit epsilon
The blow-up of solutions for the Cauchy problem of fractional Ginzburg-Landau equation with non-positive nonlinearity is shown by an ODE argument. Moreover, in one dimensional case, the optimal lifespan estimate for size of initial data is obtained.
We consider a Ginzburg-Landau type energy with a piecewise constant pinning term $a$ in the potential $(a^2 - |u|^2)^2$. The function $a$ is different from 1 only on finitely many disjoint domains, called the {it pinning domains}. These pinning domai
Unless another thing is stated one works in the $C^infty$ category and manifolds have empty boundary. Let $X$ and $Y$ be vector fields on a manifold $M$. We say that $Y$ tracks $X$ if $[Y,X]=fX$ for some continuous function $fcolon Mrightarrowmathbb