ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of Ginzburg-Landau vortices for vector fields on surfaces

85   0   0.0 ( 0 )
 نشر من قبل Antonio Segatti
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider the gradient flow of the following Ginzburg-Landau type energy [ F_varepsilon(u) := frac{1}{2}int_{M}vert D uvert_g^2 +frac{1}{2varepsilon^2}left(vert uvert_g^2-1right)^2mathrm{vol}_g. ] This energy is defined on tangent vector fields on a $2$-dimensional closed and oriented Riemannian manifold $M$ (here $D$ stands for the covariant derivative) and depends on a small parameter $varepsilon>0$. If the energy satisfies proper bounds, when $varepsilonto 0$ the second term forces the vector fields to have unit length. However, due to the incompatibility for vector fields on $M$ between the Sobolev regularity and the unit norm constraint, critical points of $F_varepsilon$ tend to generate a finite number of singular points (called vortices) having non-zero index (when the Euler characteristic is non-zero). These types of problems have been extensively analyzed in a recent paper by R. Ignat and R. Jerrard. As in Euclidean case, the position of the vortices is ruled by the so-called renormalized energy. In this paper we are interested in the dynamics of vortices. We rigorously prove that the vortices move according to the gradient flow of the renormalized energy, which is the limit behavior when $varepsilonto 0$ of the gradient flow of the Ginzburg-Landau energy.



قيم البحث

اقرأ أيضاً

We have extended Brandts method for accurate, efficient calculations within Ginzburg-Landau theory for periodic vortex lattices at arbitrary mean induction to lattices of doubly quantized vortices.
We study Gamma-convergence of graph based Ginzburg-Landau functionals, both the limit for zero diffusive interface parameter epsilon->0 and the limit for infinite nodes in the graph m -> infinity. For general graphs we prove that in the limit epsilon -> 0 the graph cut objective function is recovered. We show that the continuum limit of this objective function on 4-regular graphs is related to the total variation seminorm and compare it with the limit of the discretized Ginzburg-Landau functional. For both functionals we also study the simultaneous limit epsilon -> 0 and m -> infinity, by expressing epsilon as a power of m and taking m -> infinity. Finally we investigate the continuum limit for a nonlocal means type functional on a completely connected graph.
The blow-up of solutions for the Cauchy problem of fractional Ginzburg-Landau equation with non-positive nonlinearity is shown by an ODE argument. Moreover, in one dimensional case, the optimal lifespan estimate for size of initial data is obtained.
We consider a Ginzburg-Landau type energy with a piecewise constant pinning term $a$ in the potential $(a^2 - |u|^2)^2$. The function $a$ is different from 1 only on finitely many disjoint domains, called the {it pinning domains}. These pinning domai ns model small impurities in a homogeneous superconductor and shrink to single points in the limit $vto0$; here, $v$ is the inverse of the Ginzburg-Landau parameter. We study the energy minimization in a smooth simply connected domain $Omega subset mathbb{C}$ with Dirichlet boundary condition $g$ on $d O$, with topological degree ${rm deg}_{d O} (g) = d >0$. Our main result is that, for small $v$, minimizers have $d$ distinct zeros (vortices) which are inside the pinning domains and they have a degree equal to 1. The question of finding the locations of the pinning domains with vortices is reduced to a discrete minimization problem for a finite-dimensional functional of renormalized energy. We also find the position of the vortices inside the pinning domains and show that, asymptotically, this position is determined by {it local renormalized energy} which does not depend on the external boundary conditions.
Unless another thing is stated one works in the $C^infty$ category and manifolds have empty boundary. Let $X$ and $Y$ be vector fields on a manifold $M$. We say that $Y$ tracks $X$ if $[Y,X]=fX$ for some continuous function $fcolon Mrightarrowmathbb R$. A subset $K$ of the zero set ${mathsf Z}(X)$ is an essential block for $X$ if it is non-empty, compact, open in ${mathsf Z}(X)$ and its Poincare-Hopf index does not vanishes. One says that $X$ is non-flat at $p$ if its $infty$-jet at $p$ is non-trivial. A point $p$ of ${mathsf Z}(X)$ is called a primary singularity of $X$ if any vector field defined about $p$ and tracking $X$ vanishes at $p$. This is our main result: Consider an essential block $K$ of a vector field $X$ defined on a surface $M$. Assume that $X$ is non-flat at every point of $K$. Then $K$ contains a primary singularity of $X$. As a consequence, if $M$ is a compact surface with non-zero characteristic and $X$ is nowhere flat, then there exists a primary singularity of $X$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا