ﻻ يوجد ملخص باللغة العربية
AI systems have seen significant adoption in various domains. At the same time, further adoption in some domains is hindered by inability to fully trust an AI system that it will not harm a human. Besides the concerns for fairness, privacy, transparency, and explainability are key to developing trusts in AI systems. As stated in describing trustworthy AI Trust comes through understanding. How AI-led decisions are made and what determining factors were included are crucial to understand. The subarea of explaining AI systems has come to be known as XAI. Multiple aspects of an AI system can be explained; these include biases that the data might have, lack of data points in a particular region of the example space, fairness of gathering the data, feature importances, etc. However, besides these, it is critical to have human-centered explanations that are directly related to decision-making similar to how a domain expert makes decisions based on domain knowledge, that also include well-established, peer-validated explicit guidelines. To understand and validate an AI systems outcomes (such as classification, recommendations, predictions), that lead to developing trust in the AI system, it is necessary to involve explicit domain knowledge that humans understand and use.
Knowledge graph embeddings are now a widely adopted approach to knowledge representation in which entities and relationships are embedded in vector spaces. In this chapter, we introduce the reader to the concept of knowledge graph embeddings by expla
Large-scale natural language understanding (NLU) systems have made impressive progress: they can be applied flexibly across a variety of tasks, and employ minimal structural assumptions. However, extensive empirical research has shown this to be a do
Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learn
The overarching goal of Explainable AI is to develop systems that not only exhibit intelligent behaviours, but also are able to explain their rationale and reveal insights. In explainable machine learning, methods that produce a high level of predict
This paper presents a deep learning architecture for the semantic decoder component of a Statistical Spoken Dialogue System. In a slot-filling dialogue, the semantic decoder predicts the dialogue act and a set of slot-value pairs from a set of n-best