ترغب بنشر مسار تعليمي؟ اضغط هنا

PML and high-accuracy boundary integral equation solver for wave scattering by a locally defected periodic surface

208   0   0.0 ( 0 )
 نشر من قبل Wangtao Lu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies the PML method for wave scattering in a half space of homogeneous medium bounded by a two-dimensional, perfectly conducting, and locally defected periodic surface, and develops a high-accuracy boundary-integral-equation (BIE) solver. Along the vertical direction, we place a PML to truncate the unbounded domain onto a strip and prove that the PML solution converges linearly to the true solution in the physical subregion of the strip with the PML thickness. Laterally, we divide the unbounded strip into three regions: a region containing the defect and two semi-waveguide regions, separated by two vertical line segments. In both semi-waveguides, we prove the well-posedness of an associated scattering problem so as to well define a Neumann-to-Dirichlet (NtD) operator on the associated vertical segment. The two NtD operators, serving as exact lateral boundary conditions, reformulate the unbounded strip problem as a boundary value problem onto the defected region. Due to the periodicity of the semi-waveguides, both NtD operators turn out to be closely related to a Neumann-marching operator, governed by a nonlinear Riccati equation. It is proved that the Neumann-marching operators are contracting, so that the PML solution decays exponentially fast along both lateral directions. The consequences culminate in two opposite aspects. Negatively, the PML solution cannot exponentially converge to the true solution in the whole physical region of the strip. Positively, from a numerical perspective, the Riccati equations can now be efficiently solved by a recursive doubling procedure and a high-accuracy PML-based BIE method so that the boundary value problem on the defected region can be solved efficiently and accurately. Numerical experiments demonstrate that the PML solution converges exponentially fast to the true solution in any compact subdomain of the strip.



قيم البحث

اقرأ أيضاً

For scattering problems of time-harmonic waves, the boundary integral equation (BIE) methods are highly competitive, since they are formulated on lower-dimension boundaries or interfaces, and can automatically satisfy outgoing radiation conditions. F or scattering problems in a layered medium, standard BIE methods based on the Greens function of the background medium must evaluate the expensive Sommefeld integrals. Alternative BIE methods based on the free-space Greens function give rise to integral equations on unbounded interfaces which are not easy to truncate, since the wave fields on these interfaces decay very slowly. We develop a BIE method based on the perfectly matched layer (PML) technique. The PMLs are widely used to suppress outgoing waves in numerical methods that directly discretize the physical space. Our PML-based BIE method uses the Greens function of the PML-transformed free space to define the boundary integral operators. The method is efficient, since the Greens function of the PML-transformed free space is easy to evaluate and the PMLs are very effective in truncating the unbounded interfaces. Numerical examples are presented to validate our method and demonstrate its accuracy.
The Poisson-Boltzmann equation is a widely used model to study the electrostatics in molecular solvation. Its numerical solution using a boundary integral formulation requires a mesh on the molecular surface only, yielding accurate representations of the solute, which is usually a complicated geometry. Here, we utilize adjoint-based analyses to form two goal-oriented error estimates that allows us to determine the contribution of each discretization element (panel) to the numerical error in the solvation free energy. This information is useful to identify high-error panels to then refine them adaptively to find optimal surface meshes. We present results for spheres and real molecular geometries, and see that elements with large error tend to be in regions where there is a high electrostatic potential. We also find that even though both estimates predict different total errors, they have similar performance as part of an adaptive mesh refinement scheme. Our test cases suggest that the adaptive mesh refinement scheme is very effective, as we are able to reduce the error one order of magnitude by increasing the mesh size less than 20%. This result sets the basis towards efficient automatic mesh refinement schemes that produce optimal meshes for solvation energy calculations.
110 - Yanli Chen , Peijun Li , 2020
Consider the electromagnetic scattering of a time-harmonic plane wave by an open cavity which is embedded in a perfectly electrically conducting infinite ground plane. This paper is concerned with the numerical solutions of the transverse electric an d magnetic polarizations of the open cavity scattering problems. In each polarization, the scattering problem is reduced equivalently into a boundary value problem of the two-dimensional Helmholtz equation in a bounded domain by using the transparent boundary condition (TBC). An a posteriori estimate based adaptive finite element method with the perfectly matched layer (PML) technique is developed to solve the reduced problem. The estimate takes account both of the finite element approximation error and the PML truncation error, where the latter is shown to decay exponentially with respect to the PML medium parameter and the thickness of the PML layer. Numerical experiments are presented and compared with the adaptive finite element TBC method for both polarizations to illustrate the competitive behavior of the proposed method.
117 - Wangtao Lu 2020
This paper proposes, for wave propagating in a globally perturbed half plane with a perfectly conducting step-like surface, a sharp Sommerfeld radiation condition (SRC) for the first time, an analytic formula of the far-field pattern, and a high-accu racy numerical solver. We adopt the Wiener-Hopf method to compute the Green function for a cracked half plane, a background for the perturbed half plane. We rigorously show that the Green function asymptotically satisfies a universal-direction SRC (uSRC) and radiates purely outgoing at infinity. This helps to propose an implicit transparent boundary condition for the scattered wave, by either a cylindrical incident wave due to a line source or a plane incident wave. Then, a well-posedness theory is established via an associated variational formulation. The theory reveals that the scattered wave, post-subtracting a known wave field, satisfies the same uSRC so that its far-field pattern is accessible theoretically. For a plane-wave incidence, asymptotic analysis shows that merely subtracting reflected plane waves, due to non-uniform heights of the step-like surface at infinity, from the scattered wave in respective regions produces a discontinuous wave satisfying the uSRC as well. Numerically, we adopt a previously developed perfectly-matched-layer (PML) boundary-integral-equation method to solve the problem. Numerical results demonstrate that the PML truncation error decays exponentially fast as thickness or absorbing power of the PML increases, of which the convergence relies heavily on the Green function exponentially decaying in the PML.
82 - Yunyun Ma , Fuming Ma , Yukun Guo 2021
This paper is devoted to the computation of transmission eigenvalues in the inverse acoustic scattering theory. This problem is first reformulated as a two by two boundary system of boundary integral equations. Next, utilizing the Schur complement te chnique, we develop a Schur complement operator with regularization to obtain a reduced system of boundary integral equations. The Nystr{o}m discretization is then used to obtain an eigenvalue problem for a matrix. We employ the recursive integral method for the numerical computation of the matrix eigenvalue. Numerical results show that the proposed method is efficient and reduces computational costs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا