ترغب بنشر مسار تعليمي؟ اضغط هنا

U-GAT: Multimodal Graph Attention Network for COVID-19 Outcome Prediction

141   0   0.0 ( 0 )
 نشر من قبل Matthias Keicher
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

During the first wave of COVID-19, hospitals were overwhelmed with the high number of admitted patients. An accurate prediction of the most likely individual disease progression can improve the planning of limited resources and finding the optimal treatment for patients. However, when dealing with a newly emerging disease such as COVID-19, the impact of patient- and disease-specific factors (e.g. body weight or known co-morbidities) on the immediate course of disease is by and large unknown. In the case of COVID-19, the need for intensive care unit (ICU) admission of pneumonia patients is often determined only by acute indicators such as vital signs (e.g. breathing rate, blood oxygen levels), whereas statistical analysis and decision support systems that integrate all of the available data could enable an earlier prognosis. To this end, we propose a holistic graph-based approach combining both imaging and non-imaging information. Specifically, we introduce a multimodal similarity metric to build a population graph for clustering patients and an image-based end-to-end Graph Attention Network to process this graph and predict the COVID-19 patient outcomes: admission to ICU, need for ventilation and mortality. Additionally, the network segments chest CT images as an auxiliary task and extracts image features and radiomics for feature fusion with the available metadata. Results on a dataset collected in Klinikum rechts der Isar in Munich, Germany show that our approach outperforms single modality and non-graph baselines. Moreover, our clustering and graph attention allow for increased understanding of the patient relationships within the population graph and provide insight into the networks decision-making process.



قيم البحث

اقرأ أيضاً

The goal of weakly-supervised video moment retrieval is to localize the video segment most relevant to the given natural language query without access to temporal annotations during training. Prior strongly- and weakly-supervised approaches often lev erage co-attention mechanisms to learn visual-semantic representations for localization. However, while such approaches tend to focus on identifying relationships between elements of the video and language modalities, there is less emphasis on modeling relational context between video frames given the semantic context of the query. Consequently, the above-mentioned visual-semantic representations, built upon local frame features, do not contain much contextual information. To address this limitation, we propose a Latent Graph Co-Attention Network (LoGAN) that exploits fine-grained frame-by-word interactions to reason about correspondences between all possible pairs of frames, given the semantic context of the query. Comprehensive experiments across two datasets, DiDeMo and Charades-Sta, demonstrate the effectiveness of our proposed latent co-attention model where it outperforms current state-of-the-art (SOTA) weakly-supervised approaches by a significant margin. Notably, it even achieves a 11% improvement to Recall@1 accuracy over strongly-supervised SOTA methods on DiDeMo.
Graph Attention Network (GAT) focuses on modelling simple undirected and single relational graph data only. This limits its ability to deal with more general and complex multi-relational graphs that contain entities with directed links of different l abels (e.g., knowledge graphs). Therefore, directly applying GAT on multi-relational graphs leads to sub-optimal solutions. To tackle this issue, we propose r-GAT, a relational graph attention network to learn multi-channel entity representations. Specifically, each channel corresponds to a latent semantic aspect of an entity. This enables us to aggregate neighborhood information for the current aspect using relation features. We further propose a query-aware attention mechanism for subsequent tasks to select useful aspects. Extensive experiments on link prediction and entity classification tasks show that our r-GAT can model multi-relational graphs effectively. Also, we show the interpretability of our approach by case study.
One of the critical pieces of the self-driving puzzle is understanding the surroundings of a self-driving vehicle (SDV) and predicting how these surroundings will change in the near future. To address this task we propose MultiXNet, an end-to-end app roach for detection and motion prediction based directly on lidar sensor data. This approach builds on prior work by handling multiple classes of traffic actors, adding a jointly trained second-stage trajectory refinement step, and producing a multimodal probability distribution over future actor motion that includes both multiple discrete traffic behaviors and calibrated continuous position uncertainties. The method was evaluated on large-scale, real-world data collected by a fleet of SDVs in several cities, with the results indicating that it outperforms existing state-of-the-art approaches.
Effective understanding of the environment and accurate trajectory prediction of surrounding dynamic obstacles are indispensable for intelligent mobile systems (like autonomous vehicles and social robots) to achieve safe and high-quality planning whe n they navigate in highly interactive and crowded scenarios. Due to the existence of frequent interactions and uncertainty in the scene evolution, it is desired for the prediction system to enable relational reasoning on different entities and provide a distribution of future trajectories for each agent. In this paper, we propose a generic generative neural system (called Social-WaGDAT) for multi-agent trajectory prediction, which makes a step forward to explicit interaction modeling by incorporating relational inductive biases with a dynamic graph representation and leverages both trajectory and scene context information. We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction which not only ensures physical feasibility but also enhances model performance. The proposed system is evaluated on three public benchmark datasets for trajectory prediction, where the agents cover pedestrians, cyclists and on-road vehicles. The experimental results demonstrate that our model achieves better performance than various baseline approaches in terms of prediction accuracy.
Ultrasound (US) is a non-invasive yet effective medical diagnostic imaging technique for the COVID-19 global pandemic. However, due to complex feature behaviors and expensive annotations of US images, it is difficult to apply Artificial Intelligence (AI) assisting approaches for lungs multi-symptom (multi-label) classification. To overcome these difficulties, we propose a novel semi-supervised Two-Stream Active Learning (TSAL) method to model complicated features and reduce labeling costs in an iterative procedure. The core component of TSAL is the multi-label learning mechanism, in which label correlations information is used to design multi-label margin (MLM) strategy and confidence validation for automatically selecting informative samples and confident labels. On this basis, a multi-symptom multi-label (MSML) classification network is proposed to learn discriminative features of lung symptoms, and a human-machine interaction is exploited to confirm the final annotations that are used to fine-tune MSML with progressively labeled data. Moreover, a novel lung US dataset named COVID19-LUSMS is built, currently containing 71 clinical patients with 6,836 images sampled from 678 videos. Experimental evaluations show that TSAL using only 20% data can achieve superior performance to the baseline and the state-of-the-art. Qualitatively, visualization of both attention map and sample distribution confirms the good consistency with the clinic knowledge.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا