ﻻ يوجد ملخص باللغة العربية
Accurately forecasting Arctic sea ice from subseasonal to seasonal scales has been a major scientific effort with fundamental challenges at play. In addition to physics-based earth system models, researchers have been applying multiple statistical and machine learning models for sea ice forecasting. Looking at the potential of data-driven sea ice forecasting, we propose an attention-based Long Short Term Memory (LSTM) ensemble method to predict monthly sea ice extent up to 1 month ahead. Using daily and monthly satellite retrieved sea ice data from NSIDC and atmospheric and oceanic variables from ERA5 reanalysis product for 39 years, we show that our multi-temporal ensemble method outperforms several baseline and recently proposed deep learning models. This will substantially improve our ability in predicting future Arctic sea ice changes, which is fundamental for forecasting transporting routes, resource development, coastal erosion, threats to Arctic coastal communities and wildlife.
1) The annual cycle of atmospheric methane in southern high latitudes is extremely highly correlated with Antarctic sea ice extent. 2) The annual cycle of atmospheric methane in the Arctic is highly correlated with Antarctic or Arctic plus Antarctic
Predicting changes in sea ice cover is critical for shipping, ecosystem monitoring, and climate modeling. Current sea ice models, however, predict more ice than is observed in the Arctic, and less in the Antarctic. Improving the fit of these physics-
Recent advancements in deep learning have created many opportunities to solve real-world problems that remained unsolved for more than a decade. Automatic caption generation is a major research field, and the research community has done a lot of work
In situ and remotely sensed observations have potential to facilitate data-driven predictive models for oceanography. A suite of machine learning models, including regression, decision tree and deep learning approaches were developed to estimate sea
Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simula