ترغب بنشر مسار تعليمي؟ اضغط هنا

Sea Ice Forecasting using Attention-based Ensemble LSTM

550   0   0.0 ( 0 )
 نشر من قبل Jianwu Wang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurately forecasting Arctic sea ice from subseasonal to seasonal scales has been a major scientific effort with fundamental challenges at play. In addition to physics-based earth system models, researchers have been applying multiple statistical and machine learning models for sea ice forecasting. Looking at the potential of data-driven sea ice forecasting, we propose an attention-based Long Short Term Memory (LSTM) ensemble method to predict monthly sea ice extent up to 1 month ahead. Using daily and monthly satellite retrieved sea ice data from NSIDC and atmospheric and oceanic variables from ERA5 reanalysis product for 39 years, we show that our multi-temporal ensemble method outperforms several baseline and recently proposed deep learning models. This will substantially improve our ability in predicting future Arctic sea ice changes, which is fundamental for forecasting transporting routes, resource development, coastal erosion, threats to Arctic coastal communities and wildlife.



قيم البحث

اقرأ أيضاً

1) The annual cycle of atmospheric methane in southern high latitudes is extremely highly correlated with Antarctic sea ice extent. 2) The annual cycle of atmospheric methane in the Arctic is highly correlated with Antarctic or Arctic plus Antarctic sea ice extent. 3) We propose the global annual cycle of atmospheric methane is largely driven by Antarctic sea ice dynamics, with relatively stronger influence from other fluxes (probably the biota) in the Northern Hemisphere. 4) We propose degassing during sea ice freeze and temperature dependent solubility in the ocean dominate the annual methane cycle. 5) Results provide evidence that carbon cycle pathways, parameters and predictions must be reassessed.
Predicting changes in sea ice cover is critical for shipping, ecosystem monitoring, and climate modeling. Current sea ice models, however, predict more ice than is observed in the Arctic, and less in the Antarctic. Improving the fit of these physics- based models to observations is challenging because the models are expensive to run, and therefore expensive to optimize. Here, we construct a machine learning surrogate that emulates the effect of changing model physics on forecasts of sea ice area from the Los Alamos Sea Ice Model (CICE). We use the surrogate model to investigate the sensitivity of CICE to changes in the parameters governing: ices ridging and albedo; snows albedo, aging, and thermal conductivity; the effect of meltwater on albedo; and the effect of ponds on albedo. We find that CICEs sensitivity to these model parameters differs between hemispheres. We propose that future sea ice modelers separate the snow conductivity and snow grain size distributions on a seasonal and inter-hemispheric basis, and we recommend optimal values of these parameters. This will make it possible to make models that fit observations of both Arctic and Antarctic sea ice more closely. These results demonstrate that important aspects of the behavior of a leading sea ice model can be captured by a relatively simple support vector regression surrogate model, and that this surrogate dramatically increases the ease of tuning the full simulation.
Recent advancements in deep learning have created many opportunities to solve real-world problems that remained unsolved for more than a decade. Automatic caption generation is a major research field, and the research community has done a lot of work on it in most common languages like English. Urdu is the national language of Pakistan and also much spoken and understood in the sub-continent region of Pakistan-India, and yet no work has been done for Urdu language caption generation. Our research aims to fill this gap by developing an attention-based deep learning model using techniques of sequence modeling specialized for the Urdu language. We have prepared a dataset in the Urdu language by translating a subset of the Flickr8k dataset containing 700 man images. We evaluate our proposed technique on this dataset and show that it can achieve a BLEU score of 0.83 in the Urdu language. We improve on the previous state-of-the-art by using better CNN architectures and optimization techniques. Furthermore, we provide a discussion on how the generated captions can be made correct grammar-wise.
In situ and remotely sensed observations have potential to facilitate data-driven predictive models for oceanography. A suite of machine learning models, including regression, decision tree and deep learning approaches were developed to estimate sea surface temperatures (SST). Training data consisted of satellite-derived SST and atmospheric data from The Weather Company. Models were evaluated in terms of accuracy and computational complexity. Predictive skill were assessed against observations and a state-of-the-art, physics-based model from the European Centre for Medium Weather Forecasting. Results demonstrated that by combining automated feature engineering with machine-learning approaches, accuracy comparable to existing state-of-the-art can be achieved. Models captured seasonal patterns in the data and qualitatively reproduce short-term variations driven by atmospheric forcing. Further, it demonstrated that machine-learning-based approaches can be used as transportable prediction tools for ocean variables -- the data-driven nature of the approach naturally integrates with automatic deployment frameworks, where model deployments are guided by data rather than user-parametrisation and expertise. The low computational cost of inference makes the approach particularly attractive for edge-based computing where predictive models could be deployed on low-power devices in the marine environment.
Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simula tions incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93-243 cm) and RCP 2.6 (26-98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (vs. 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا