ترغب بنشر مسار تعليمي؟ اضغط هنا

On the importance of wave planet interactions for the migration of two super-Earths embedded in a protoplanetary disk

181   0   0.0 ( 0 )
 نشر من قبل Ewa Szuszkiewicz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a repulsion mechanism between two low-mass planets migrating in a protoplanetary disk, for which the relative migration switches from convergent to divergent. This mechanism invokes density waves emitted by one planet transferring angular momentum to the coorbital region of the other and then directly to it through the horseshoe drag. We formulate simple analytical estimates, which indicate when the repulsion mechanism is effective. One condition for a planet to be repelled is that it forms a partial gap in the disk and another is that this should contain enough material to support angular momentum exchange with it. Using two-dimensional hydrodynamical simulations we obtain divergent migration of two super-Earths embedded in a protoplanetary disk because of repulsion between them and verify these conditions. To investigate the importance of resonant interaction we study the migration of planet pairs near first-order commensurabilities. It appears that proximity to resonance is significant but not essential. In this context we find repulsion still occurs when the gravitational interaction between the planets is removed sugesting the importance of angular momentum transfer through waves excited by another planet. This may occur through the scattering of coorbital material (the horseshoe drag), or material orbiting close by. Our results indicate that if conditions favor the repulsion between two planets described above, we expect to observe planet pairs with their period ratios greater, often only slightly greater, than resonant values or possibly rarity of commensurability.



قيم البحث

اقرأ أيضاً

We present the results of our recent study on the interactions between a giant planet and a self-gravitating gas disk. We investigate how the disks self-gravity affects the gap formation process and the migration of the giant planet. Two series of 1- D and 2-D hydrodynamic simulations are performed. We select several surface densities and focus on the gravitationally stable region. To obtain more reliable gravity torques exerted on the planet, a refined treatment of disks gravity is adopted in the vicinity of the planet. Our results indicate that the net effect of the disks self-gravity on the gap formation process depends on the surface density of the disk. We notice that there are two critical values, Sigma_I and Sigma_II. When the surface density of the disk is lower than the first one, Sigma_0 < Sigma_I, the effect of self-gravity suppresses the formation of a gap. When Sigma_0 > Sigma_I, the self-gravity of the gas tends to benefit the gap formation process and enlarge the width/depth of the gap. According to our 1-D and 2-D simulations, we estimate the first critical surface density Sigma_I approx 0.8MMSN. This effect increases until the surface density reaches the second critical value Sigma_II. When Sigma_0 > Sigma_II, the gravitational turbulence in the disk becomes dominant and the gap formation process is suppressed again. Our 2-D simulations show that this critical surface density is around 3.5MMSN. We also study the associated orbital evolution of a giant planet. Under the effect of the disks self-gravity, the migration rate of the giant planet increases when the disk is dominated by gravitational turbulence. We show that the migration timescale associates with the effective viscosity and can be up to 10^4 yr.
As planets form they tidally interact with their natal disks. Though the tidal perturbation induced by Earth and super-Earth mass planets is generally too weak to significantly modify the structure of the disk, the interaction is potentially strong e nough to cause the planets to undergo rapid type I migration. This physical process may provide a source of short-period super-Earths, though it may also pose a challenge to the emergence and retention of cores on long-period orbits with sufficient mass to evolve into gas giants. Previous numerical simulations have shown that the type I migration rate sensitively depends upon the circumstellar disks properties, particularly the temperature and surface density gradients. Here, we derive these structure parameters for 1) a self-consistent viscous-disk model based on a constant alpha-prescription, 2) an irradiated disk model that takes into account heating due to the absorption of stellar photons, and 3) a layered-accretion disk model with variable alpha-parameter. We show that in the inner viscously-heated regions of typical protostellar disks, the horseshoe and corotation torques of super-Earths can exceed their differential Lindblad torque and cause them to undergo outward migration. However, the temperature profile due to passive stellar irradiation causes type I migration to be inwards throughout much of the disk. For disks in which there is outwards migration, we show that location and the mass range of the planet traps depends on some uncertain assumptions adopted for these disk models. Competing physical effects may lead to dispersion in super-Earths mass-period distribution.
526 - Ya-Ping Li 2019
We investigate the impact of a highly eccentric 10 $M_{rm oplus}$ (where $M_{rm oplus}$ is the Earth mass) planet embedded in a dusty protoplanetary disk on the dust dynamics and its observational implications. By carrying out high-resolution 2D gas and dust two-fluid hydrodynamical simulations, we find that the planets orbit can be circularized at large radii. After the planets orbit is circularized, partial gap opening and dust ring formation happen close to the planets circularization radius, which can explain the observed gaps/rings at the outer region of disks. When the disk mass and viscosity become low, we find that an eccentric planet can even open gaps and produce dust rings close to the pericenter and apocenter radii before its circularization. This offers alternative scenarios for explaining the observed dust rings and gaps in protoplanetary disks. A lower disk viscosity is favored to produce brighter rings in observations. An eccentric planet can also potentially slow down the dust radial drift in the outer region of the disk when the disk viscosity is low ($alpha lesssim2times10^{-4}$) and the circularization is faster than the dust radial drift.
179 - Zhaohuan Zhu , James M. Stone , 2012
We carry out local three dimensional (3D) hydrodynamic simulations of planet-disk interaction in stratified disks with varied thermodynamic properties. We find that whenever the Brunt-Vaisala frequency (N) in the disk is nonzero, the planet exerts a strong torque on the disk in the vicinity of the planet, with a reduction in the traditional torque cutoff. In particular, this is true for adiabatic perturbations in disks with isothermal density structure, as should be typical for centrally irradiated protoplanetary disks. We identify this torque with buoyancy waves, which are excited (when N is non-zero) close to the planet, within one disk scale height from its orbit. These waves give rise to density perturbations with a characteristic 3D spatial pattern which is in close agreement with the linear dispersion relation for buoyancy waves. The torque due to these waves can amount to as much as several tens of per cent of the total planetary torque, which is not expected based on analytical calculations limited to axisymmetric or low-m modes. Buoyancy waves should be ubiquitous around planets in the inner, dense regions of protoplanetary disks, where they might possibly affect planet migration.
120 - Yasuhiro Hasegawa 2016
We explore whether close-in super-Earths were formed as rocky bodies that failed to grow fast enough to become the cores of gas giants before the natal protostellar disk dispersed. We model the failed cores inward orbital migration in the low-mass or type I regime, to stopping points at distances where the tidal interaction with the protostellar disk applies zero net torque. The three kinds of migration traps considered are those due to the dead zones outer edge, the ice line, and the transition from accretion to starlight as the disks main heat source. As the disk disperses, the traps move toward final positions near or just outside 1~au. Planets at this location exceeding about 3~M$_oplus$ open a gap, decouple from their host trap, and migrate inward in the high-mass or type II regime to reach the vicinity of the star. We synthesize the population of planets formed in this scenario, finding that some fraction of the observed super-Earths can be failed cores. Most super-Earths formed this way have more than 4~M$_oplus$, so their orbits when the disk disperses are governed by type II migration. These planets have solid cores surrounded by gaseous envelopes. Their subsequent photoevaporative mass loss is most effective for masses originally below about 6 M$_oplus$. The failed core scenario suggests a division of the observed super-Earth mass-radius diagram into five zones according to the inferred formation history.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا