ﻻ يوجد ملخص باللغة العربية
Quantum networks using photonic channels require control of the interactions between the photons, carrying the information, and the elements comprising the nodes. In this work we theoretically analyse the spectral properties of an optical photon emitted by a solid-state quantum memory, which acts as a converter of a photon absorbed in another frequency range. We determine explicitly the expression connecting the stored and retrieved excitation taking into account possible mode and phase mismatching of the experimental setup. The expression we obtain describes the output field as a function of the input field for a transducer working over a wide range of frequencies, from optical-to-optical to microwave-to-optical. We apply this result to analyse the photon spectrum and the retrieval probability as a function of the optical depth for microwave-to-optical transduction. In the absence of losses, the efficiency of the solid-state quantum transducer is intrinsically determined by the capability of designing the retrieval process as the time-reversal of the storage dynamics.
By pulsed s-shell resonant excitation of a single quantum dot-micropillar system, we generate long streams of a thousand of near transform-limited single photons with high mutual indistinguishability. Hong-Ou-Mandel interference of two photons are me
A scheme for active temporal-to-spatial demultiplexing of single-photons generated by a solid-state source is introduced. The scheme scales quasi-polynomially with photon number, providing a viable technological path for routing n photons in the one
Resonance fluorescence in the Heitler regime provides access to single photons with coherence well beyond the Fourier transform limit of the transition, and holds the promise to circumvent environment-induced dephasing common to all solid-state syste
Highly efficient sources of indistinguishable single photons that can operate at room temperature would be very beneficial for many applications in quantum technology. We show that the implementation of such sources is a realistic goal using solid-st
Large-scale quantum networks will employ telecommunication-wavelength photons to exchange quantum information between remote measurement, storage, and processing nodes via fibre-optic channels. Quantum memories compatible with telecommunication-wavel