ترغب بنشر مسار تعليمي؟ اضغط هنا

81 New Candidate Fast Radio Bursts in Parkes Archive

137   0   0.0 ( 0 )
 نشر من قبل Xuan Yang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have searched for weak fast radio burst (FRB) events using a database containing 568,736,756 transient events detected using the Parkes radio telescope between 1997 and 2001. In order to classify these pulses, and to identify likely FRB candidates, we used a machine learning algorithm based on ResNet. We identified 81 new candidate FRBs and provide details of their positions, event times, and dispersion measures. These events were detected in only one beam of the Parkes multibeam receiver. We used a relatively low S/N cutoff threshold when selecting these bursts and some have dispersion measures only slightly exceeding the expected Galactic contribution. We therefore present these candidate FRBs as a guide for follow-up observations in the search for repeating FRBs.



قيم البحث

اقرأ أيضاً

95 - F. Crawford , A. Rane , L. Tran 2016
We have searched three Parkes multibeam 1.4 GHz surveys for the presence of fast radio bursts (FRBs) out to a dispersion measure (DM) of 5000 pc cm$^{-3}$. These surveys originally targeted the Magellanic Clouds (in two cases) and unidentified gamma- ray sources at mid-Galactic latitudes (in the third case) for new radio pulsars. In previous processing, none of these surveys were searched to such a high DM limit. The surveys had a combined total of 719 hr of Parkes multibeam on-sky time. One known FRB, 010724, was present in our data and was detected in our analysis but no new FRBs were found. After adding in the on-sky Parkes time from these three surveys to the on-sky time (7512 hr) from the five Parkes surveys analysed by Rane et al., all of which have now been searched to high DM limits, we improve the constraint on the all-sky rate of FRBs above a fluence level of 3.8 Jy ms at 1.4 GHz to $R = 3.3^{+3.7}_{-2.2} times 10^{3}$ events per day per sky (at the 99% confidence level). Future Parkes surveys that accumulate additional multibeam on-sky time (such as the ongoing high-resolution Parkes survey of the LMC) can be combined with these results to further constrain the all-sky FRB rate.
The Parkes Pulsar Timing Array (PPTA) project monitors two dozen millisecond pulsars (MSPs) in order to undertake a variety of fundamental physics experiments using the Parkes 64m radio telescope. Since June 2017 we have been undertaking commensal se arches for fast radio bursts (FRBs) during the MSP observations. Here, we report the discovery of four FRBs (171209, 180309, 180311 and 180714). The detected events include an FRB with the highest signal-to-noise ratio ever detected at the Parkes observatory, which exhibits unusual spectral properties. All four FRBs are highly polarized. We discuss the future of commensal searches for FRBs at Parkes.
66 - W. Farah , C. Flynn , M. Bailes 2019
We detail a new fast radio burst (FRB) survey with the Molonglo Radio Telescope, in which six FRBs were detected between June 2017 and December 2018. By using a real-time FRB detection system, we captured raw voltages for five of the six events, whic h allowed for coherent dedispersion and very high time resolution (10.24 $mu$s) studies of the bursts. Five of the FRBs show temporal broadening consistent with interstellar and/or intergalactic scattering, with scattering timescales ranging from 0.16 to 29.1 ms. One burst, FRB181017, shows remarkable temporal structure, with 3 peaks each separated by 1 ms. We searched for phase-coherence between the leading and trailing peaks and found none, ruling out lensing scenarios. Based on this survey, we calculate an all-sky rate at 843 MHz of $98^{+59}_{-39}$ events sky$^{-1}$ day$^{-1}$ to a fluence limit of 8 Jy-ms: a factor of 7 below the rates estimated from the Parkes and ASKAP telescopes at 1.4 GHz assuming the ASKAP-derived spectral index $alpha=-1.6$ ($F_{ u}propto u^{alpha}$). Our results suggest that FRB spectra may turn over below 1 GHz. Optical, radio and X-ray followup has been made for most of the reported bursts, with no associated transients found. No repeat bursts were found in the survey.
We summarize our understanding of millisecond radio bursts from an extragalactic population of sources. FRBs occur at an extraordinary rate, thousands per day over the entire sky with radiation energy densities at the source about ten billion times l arger than those from Galactic pulsars. We survey FRB phenomenology, source models and host galaxies, coherent radiation models, and the role of plasma propagation effects in burst detection. The FRB field is guaranteed to be exciting: new telescopes will expand the sample from the current ~80 unique burst sources (and a few secure localizations and redshifts) to thousands, with burst localizations that enable host-galaxy redshifts emerging directly from interferometric surveys. * FRBs are now established as an extragalactic phenomenon. * Only a few sources are known to repeat. Despite the failure to redetect other FRBs, they are not inconsistent with all being repeaters. * FRB sources may be new, exotic kinds of objects or known types in extreme circumstances. Many inventive models exist, ranging from alien spacecraft to cosmic strings but those concerning compact objects and supermassive black holes have gained the most attention. A rapidly rotating magnetar is a promising explanation for FRB 121102 along with the persistent source associated with it, but alternative source models are not ruled out for it or other FRBs. * FRBs are powerful tracers of circumsource environments, `missing baryons in the IGM, and dark matter. * The relative contributions of host galaxies and the IGM to propagation effects have yet to be disentangled, so dispersion measure distances have large uncertainties.
Fast radio bursts (FRBs) are bright, unresolved, millisecond-duration flashes of radio emission originating from outside of the Milky Way. The source of these mysterious outbursts is unknown, but their high luminosity, high dispersion measure and sho rt duration requires an extreme, high-energy, astrophysical process. The majority of FRBs have been discovered as single events which would require a chance coincidence for contemporaneous multiwavelength observations. However, two have been observed to repeat: FRB 121102 and the recently detected FRB 180814.J0422+73. These repeating FRBs have allowed for targeted observations by a number of different instruments, including VERITAS. We present the VERITAS FRB observing program and the results of these observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا