ترغب بنشر مسار تعليمي؟ اضغط هنا

The Surface Array planned for IceCube-Gen2 (ICRC 2021)

75   0   0.0 ( 0 )
 نشر من قبل Frank Schr\\\"oder
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

IceCube-Gen2, the extension of the IceCube Neutrino Observatory, will feature three main components: an optical array in the deep ice, a large-scale radio array in the shallow ice and firn, and a surface detector above the optical array. Thus, IceCube-Gen2 will not only be an excellent detector for PeV neutrinos, but also constitutes a unique setup for the measurement of cosmic-ray air showers, where the electromagnetic component and low-energy muons are measured at the surface and high-energy muons are measured in the ice. As for ongoing enhancement of IceCubes current surface array, IceTop, we foresee a combination of elevated scintillation and radio detectors for the Gen2 surface array, aiming at high measurement accuracy for air showers. The science goals are manifold: The in-situ measurement of the cosmic-ray flux and mass composition, as well as more thorough tests of hadronic interaction models, will improve the understanding of muons and atmospheric neutrinos detected in the ice, in particular, regarding prompt muons. Moreover, the surface array provides a cosmic-ray veto for the in-ice detector and contributes to the calibration of the optical and radio arrays. Last but not least, the surface array will make major contributions to cosmic-ray science in the energy range of the transition from Galactic to extragalactic sources. The increased sensitivities for photons and for cosmic-ray anisotropies at multi-PeV energies provide a chance to solve the puzzle of the origin of the most energetic Galactic cosmic rays and will serve IceCubes multimessenger mission.



قيم البحث

اقرأ أيضاً

69 - Brian Clark 2021
The IceCube Neutrino Observatory opened the window on neutrino astronomy by discovering high-energy astrophysical neutrinos in 2013 and identifying the first compelling astrophysical neutrino source, the blazar TXS0506+056, in 2017. In this talk, we will discuss the science reach and ongoing development of the IceCube-Gen2 facility---a planned extension to IceCube. IceCube-Gen2 will increase the rate of observed cosmic neutrinos by an order of magnitude, be able to detect five-times fainter neutrino sources, and extend the measurement of astrophysical neutrinos several orders of magnitude higher in energy. We will discuss the envisioned design of the instrument, which will include an enlarged in-ice optical array, a surface array for the study of cosmic-rays, and a shallow radio array to detect ultra-high energy (>100 PeV) neutrinos. we will also highlight ongoing efforts to develop and test new instrumentation for IceCube-Gen2.
The IceCube Neutrino Observatory at the South Pole has measured the diffuse astrophysical neutrino flux up to ~PeV energies and is starting to identify first point source candidates. The next generation facility, IceCube-Gen2, aims at extending the a ccessible energy range to EeV in order to measure the continuation of the astrophysical spectrum, to identify neutrino sources, and to search for a cosmogenic neutrino flux. As part of IceCube-Gen2, a radio array is foreseen that is sensitive to detect Askaryan emission of neutrinos beyond ~30 PeV. Surface and deep antenna stations have different benefits in terms of effective area, resolution, and the capability to reject backgrounds from cosmic-ray air showers and may be combined to reach the best sensitivity. The optimal detector configuration is still to be identified. This contribution presents the full-array simulation efforts for a combination of deep and surface antennas, and compares different design options with respect to their sensitivity to fulfill the science goals of IceCube-Gen2.
The recent observation by the IceCube neutrino observatory of an astrophysical flux of neutrinos represents the first light in the nascent field of neutrino astronomy. The observed diffuse neutrino flux seems to suggest a much larger level of hadroni c activity in the non-thermal universe than previously thought and suggests a rich discovery potential for a larger neutrino observatory. This document presents a vision for an substantial expansion of the current IceCube detector, IceCube-Gen2, including the aim of instrumenting a $10,mathrm{km}^3$ volume of clear glacial ice at the South Pole to deliver substantial increases in the astrophysical neutrino sample for all flavors. A detector of this size would have a rich physics program with the goal to resolve the sources of these astrophysical neutrinos, discover GZK neutrinos, and be a leading observatory in future multi-messenger astronomy programs.
IceCube-Gen2 is a planned extension of the IceCube Neutrino Observatory at the South Pole. The extension is optimized to search for sources of astrophysical neutrinos from TeV to EeV, and will improve the sensitivity of the observatory to neutrino po int sources by a factor of five. The science case of IceCube-Gen2 is built on a successful decade of observations with IceCube. This index of contributions to the 37th International Cosmic Ray Conference in Berlin, Germany (12-23 July 2021) describes research and development efforts for IceCube-Gen2. Included are performance studies of next-generation optical sensors that will detect Cherenkov radiation from TeV-PeV cosmic rays and neutrinos; optimizations of the geometries of the surface and in-ice optical arrays; and estimates of the sensitivity of the proposed IceCube-Gen2 radio array to Askaryan emission from PeV-EeV neutrinos. Contributions related to the existing instrument, IceCube, are available in a separate collection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا