ﻻ يوجد ملخص باللغة العربية
Truss robots are highly redundant parallel robotic systems and can be applied in a variety of scenarios. The variable topology truss (VTT) is a class of modular truss robot. As self-reconfigurable modular robots, variable topology trusses are composed of many edge modules that can be rearranged into various structures with respect to different activities and tasks. These robots are able to change their shapes by not only controlling joint positions which is similar to robots with fixed morphologies, but also reconfiguring the connections among modules in order to change their morphologies. Motion planning is the fundamental to apply a VTT robot, including reconfiguration to alter its shape, and non-impact locomotion on the ground. This problem for VTT robots is difficult due to their non-fixed morphologies, high dimensionality, the potential for self-collision, and complex motion constraints. In this paper, a new motion planning framework to dramatically alter the structure of a VTT is presented. It can also be used to solve locomotion tasks much more efficient compared with previous work. Several test scenarios are used to show its effectiveness.
Planning whole-body motions while taking into account the terrain conditions is a challenging problem for legged robots since the terrain model might produce many local minima. Our coupled planning method uses stochastic and derivatives-free search t
The quality of the visual feedback can vary significantly on a legged robot that is meant to traverse unknown and unstructured terrains. The map of the environment, acquired with online state-of-the-art algorithms, often degrades after a few steps, d
Traditional motion planning approaches for multi-legged locomotion divide the problem into several stages, such as contact search and trajectory generation. However, reasoning about contacts and motions simultaneously is crucial for the generation of
In this paper, we aim to improve the robustness of dynamic quadrupedal locomotion through two aspects: 1) fast model predictive foothold planning, and 2) applying LQR to projected inverse dynamic control for robust motion tracking. In our proposed pl
We present a legged motion planning approach for quadrupedal locomotion over challenging terrain. We decompose the problem into body action planning and footstep planning. We use a lattice representation together with a set of defined body movement p