ﻻ يوجد ملخص باللغة العربية
The practical applications of chiral discrimination are usually limited by the weak chiral response of enantiomers and the high complexity of detection methods. Here, we propose to use the C lines (i.e., lines of polarization singularities) emerged in light scattering by a metal sphere to detect the chirality of small chiral particles. Using full-wave numerical simulations and analytical multipole expansions, we determined the absorption dissymmetry of the chiral particles at different positions on the C lines and found that it can be much larger than that induced by circularly polarized plane wave excitation. We uncover that the large dissymmetry factor is attributed to the asymmetric absorption of electric and magnetic dipoles induced by the C lines. The results can generate novel methods of chiral discrimination and may find applications in optical manipulations, optical sensing, and chiral quantum optics.
Polarization singularities of vectorial electromagnetic fields locate at the positions (such as points, lines, or surfaces) where properties of polarization ellipses are not defined. They are manifested as circular and linear polarization, for which
Chiral optical effects are generally quantified along some specific incident directions of exciting waves (especially for extrinsic chiralities of achiral structures) or defined as direction-independent properties by averaging the responses among all
Valley polarization is amongst the most critical attributes of atomically thin materials. However, achieving a high contrast from monolayer transition metal dichalcogenides (TMDs) has so far been challenging. In this work, a giant valley polarization
We present the characteristics of a simple waveguiding structure constructed by anisotropic birefringent crystal-metal-chiral medium, anisotropic-metal-chiral in short, and reveal the chiral-dependent dispersion and propagation properties of the surf
We predict and experimentally verify an entoptic phenomenon through which humans are able to perceive and discriminate structured light with space-varying polarization. Direct perception and discrimination is possible through the observation of disti