ﻻ يوجد ملخص باللغة العربية
Data selection methods, such as active learning and core-set selection, are useful tools for improving the data efficiency of deep learning models on large-scale datasets. However, recent deep learning models have moved forward from independent and identically distributed data to graph-structured data, such as social networks, e-commerce user-item graphs, and knowledge graphs. This evolution has led to the emergence of Graph Neural Networks (GNNs) that go beyond the models existing data selection methods are designed for. Therefore, we present Grain, an efficient framework that opens up a new perspective through connecting data selection in GNNs with social influence maximization. By exploiting the common patterns of GNNs, Grain introduces a novel feature propagation concept, a diversified influence maximization objective with novel influence and diversity functions, and a greedy algorithm with an approximation guarantee into a unified framework. Empirical studies on public datasets demonstrate that Grain significantly improves both the performance and efficiency of data selection (including active learning and core-set selection) for GNNs. To the best of our knowledge, this is the first attempt to bridge two largely parallel threads of research, data selection, and social influence maximization, in the setting of GNNs, paving new ways for improving data efficiency.
Graph Neural Networks (GNNs) achieve an impressive performance on structured graphs by recursively updating the representation vector of each node based on its neighbors, during which parameterized transformation matrices should be learned for the no
A variety of graph neural networks (GNNs) frameworks for representation learning on graphs have been recently developed. These frameworks rely on aggregation and iteration scheme to learn the representation of nodes. However, information between node
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems on heterogeneous diffusion networks. Our new framework leverages the Mori-Zwanzig formalism to obtain an exact evolution equation of th
Graph neural networks (GNNs) have been shown with superior performance in various applications, but training dedicated GNNs can be costly for large-scale graphs. Some recent work started to study the pre-training of GNNs. However, none of them provid
Graph structured data have enabled several successful applications such as recommendation systems and traffic prediction, given the rich node features and edges information. However, these high-dimensional features and high-order adjacency informatio