ﻻ يوجد ملخص باللغة العربية
In the slice Hardy space over the unit ball of quaternions, we introduce the slice hyperbolic backward shift operators $mathcal S_a$ based on the identity $$f=e_alangle f, e_arangle+B_{a}*mathcal S_a f,$$ where $e_a$ denotes the slice normalized Szego kernel and $ B_a $ the slice Mobius transformation. By iterating the identity above, the greedy algorithm gives rise to the slice adaptive Fourier decomposition via maximum selection principle. This leads to the slice Takenaka-Malmquist orthonormal system.
In this paper, we introduce the quaternionic slice polyanalytic functions and we prove some of their properties. Then, we apply the obtained results to begin the study of the quaternionic Fock and Bergman spaces in this new setting. In particular, we
The purpose of this paper is twofold. One is to enrich from a geometrical point of view the theory of octonionic slice regular functions. We first prove a boundary Schwarz lemma for slice regular self-mappings of the open unit ball of the octonionic
In this paper we prove two Bloch type theorems for quaternionic slice regular functions. We first discuss the injective and covering properties of some classes of slice regular functions from slice regular Bloch spaces and slice regular Bergman space
By a famous result, functions in backward shift invariant subspaces in Hardy spaces are characterized by the fact that they admit a pseudocontinuation a.e. on $T$. More can be said if the spectrum of the associated inner function has holes on $T$. Th
The paper investigates the complex gradient descent method (CGD) for the best rational approximation of a given order to a function in the Hardy space on the unit disk. It is equivalent to finding the best Blaschke form with free poles. The adaptive