ﻻ يوجد ملخص باللغة العربية
Using viscoelastic mass/spring model simulations, we explore tidal evolution and migration of compact binary asteroid systems. We find that after the secondary is captured into a spin-synchronous state, non-principal axis rotation in the secondary can be long-lived. The secondarys long axis can remain approximately aligned along the vector connecting secondary to primary while the secondary rocks back and forth about its long axis. Inward orbital semi-major axis migration can also resonantly excite non-principal axis rotation. By estimating solar radiation forces on triangular surface meshes, we show that the magnitude of the BYORP effect induced torque is sensitive to the secondarys spin state. Non-principal axis rotation within the 1:1 spin-orbit resonance can reduce the BYORP torque or cause frequent reversals in its direction.
Lightcurve observations of asteroids and bare cometary nuclei are the most widely used observational tool to derive the rotational parameters. Therefore, an in-depth understanding of how component periods of dynamically excited non-principal axis (NP
Context. The study of non-principal axis (NPA) rotators can provide important clues to the evolution of the spin state of asteroids. However, so far, very few studies have focused on NPA-rotating main-belt asteroids (MBAs). One of MBAs that are known
We obtained thorough photometric observations of two binary near-Earth asteroids (66391) Moshup = 1999 KW4 and (88710) 2001 SL9 taken from 2000 to 2019 and derived physical and dynamical properties of the binary systems. We found that the data for 19
In understanding the composition and internal structure of asteroids, their density is perhaps the most diagnostic quantity. We aim here to characterize the surface composition, mutual orbit, size, mass, and density of the small main-belt binary aste
So far, multiple stellar systems harbor more than 130 extra solar planets. Dynamical simulations show that the outcome of planetary formation process can lead to various planetary architecture (i.e. location, size, mass and water content) when the st