ﻻ يوجد ملخص باللغة العربية
Let $mathcal{G} = {G_1 = (V, E_1), dots, G_m = (V, E_m)}$ be a collection of $m$ graphs defined on a common set of vertices $V$ but with different edge sets $E_1, dots, E_m$. Informally, a function $f :V rightarrow mathbb{R}$ is smooth with respect to $G_k = (V,E_k)$ if $f(u) sim f(v)$ whenever $(u, v) in E_k$. We study the problem of understanding whether there exists a nonconstant function that is smooth with respect to all graphs in $mathcal{G}$, simultaneously, and how to find it if it exists.
We show that the spectral flow of a one-parameter family of Schrodinger operators on a metric graph is equal to the Maslov index of a path of Lagrangian subspaces describing the vertex conditions. In addition, we derive an Hadamard-type formula for t
A limit theorem for a sequence of diffusion processes on graphs is proved in a case when vary both parameters of the processes (the drift and diffusion coefficients on every edge and the asymmetry coefficients in every vertex), and configuration of g
The celebrated minimax principle of Yao (1977) says that for any Boolean-valued function $f$ with finite domain, there is a distribution $mu$ over the domain of $f$ such that computing $f$ to error $epsilon$ against inputs from $mu$ is just as hard a
Given a graph with a designated set of boundary vertices, we define a new notion of a Neumann Laplace operator on a graph using a reflection principle. We show that the first eigenvalue of this Neumann graph Laplacian satisfies a Cheeger inequality.
Given $n times n$ real symmetric matrices $A_1, dots, A_m$, the following {it spectral minimax} property holds: $$min_{X in mathbf{Delta}_n} max_{y in S_m} sum_{i=1}^m y_iA_i bullet X=max_{y in S_m} min_{X in mathbf{Delta}_n} sum_{i=1}^m y_iA_i bulle