ترغب بنشر مسار تعليمي؟ اضغط هنا

Three Core-Collapse Supernovae with Nebular Hydrogen Emission

260   0   0.0 ( 0 )
 نشر من قبل Jesper Sollerman
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present SN 2020jfo, a Type IIP supernova in the nearby galaxy M61. Optical light curves from the Zwicky Transient Facility, complemented with data from Swift and near-IR photometry are presented. The 350-day duration bolometric light curve exhibits a relatively short (~ 65 days) plateau. This implies a moderate ejecta mass (~ 5 Msun). A series of spectroscopy is presented, including spectropolarimetric observations. The nebular spectra are dominated by Halpha but also reveal emission lines from oxygen and calcium. Comparisons to synthetic nebular spectra indicate an initial progenitor mass of about 12 Msun. Stable nickel is present in the nebular spectrum, with a super-solar Ni/Fe ratio. Several years of pre-discovery data are examined, but no signs of pre-cursor activity is found. Pre-explosion Hubble Space Telescope imaging reveals a probable progenitor star, detected only in the reddest band and is fainter than expected for stars in the 10 - 15 Msun range, in tension with the analysis of the LC and the nebular spectral modeling. We present two additional core-collapse SNe monitored by the ZTF, which also have nebular Halpha-dominated spectra. This illustrates how the absence or presence of interaction with circumstellar material affect both the LCs and in particular the nebular spectra. Type II SN 2020amv has a LC powered by CSM interaction, in particular after about 40 days when the LC is bumpy and slowly evolving. The late-time spectra show strong Halpha emission with a structure suggesting emission from a thin, dense shell. The evolution of the complex three-horn line profile is reminiscent of that observed for SN 1998S. SN 2020jfv has a poorly constrained early-time LC, but shows a transition from a hydrogen-poor Type IIb to a Type IIn, where the nebular spectrum after the light-curve rebrightening is dominated by Halpha, although with an intermediate line width.



قيم البحث

اقرأ أيضاً

Core-collapse SNe (CCSNe): Systematic searches of radio emission from CCSNe are still lacking, and only targeted searches of radio emission from just some of the optically discovered CCSNe in the local universe have been carried out. Optical searches miss a significant fraction of CCSNe due to dust obscuration; CCSN radio searches are thus more promising for yielding the complete, unobscured star-formation rates in the local universe. The SKA yields the possibility to piggyback for free in this area of research by carrying out commensal, wide-field, blind transient survey observations. SKA1-SUR should be able to discover several hundreds of CCSNe in just one year, compared to about a dozen CCSNe that the VLASS would be able to detect in one year, at most. SKA, with an expected sensitivity ten times that of SKA1, is expected to detect CCSNe in the local Universe by the thousands. Therefore, commensal SKA observations could easily result in an essentially complete census of all CCSNe in the local universe, thus yielding an accurate determination of the volumetric CCSN rate. Type Ia SNe: We advocate for the use of the SKA to search for the putative prompt (~first few days after the explosion) radio emission of any nearby type Ia SN, via target-of-opportunity observations. The huge improvement in sensitivity of the SKA with respect to its predecessors will allow to unambiguously discern which progenitor scenario (single-degenerate vs. double-degenerate) applies to them.
322 - Iair Arcavi 2017
Hydrogen-rich core collapse supernovae, known as Type II supernovae, are the most common type of stellar explosion realized in nature. They are defined by the presence of prominent hydrogen lines in their spectra. Type II supernovae are observed only in star-forming galaxies, and several events have been directly linked to massive star progenitors. Five main subclasses are identified: Type IIP (displaying a plateau in their light curve), Type IIL (displaying a light curve decline), Type IIn (displaying narrow emission lines), Type IIb (displaying increasingly strong He features with time) and 87A-likes (displaying long-rising light curves similar to that of SN 1987A). Type IIP supernovae have been robustly established as the explosions of red supergiants, while the progenitors of Type IILs remain elusive. Type IIns are likely linked to luminous blue variables, Type IIb progenitors may be interacting binary systems and the prototype of the 87A-like class was observed to be the explosion of a blue supergiant. The diversity in progenitor mass, metallicity, binarity and rotation is likely responsible for the diversity in observed explosion types, but the connection between progenitor parameters and supernova properties is not yet entirely understood theoretically nor fully mapped observationally. New observational methods for constraining this connection are currently being implemented, including the analyses of large samples of events, making use of very early data (obtained hours to days from explosion) and statistical studies of host-galaxy properties.
We present 645 optical spectra of 73 supernovae (SNe) of Types IIb, Ib, Ic, and broad-lined Ic. All of these types are attributed to the core collapse of massive stars, with varying degrees of intact H and He envelopes before explosion. The SNe in ou r sample have a mean redshift <cz> = 4200 km/s. Most of these spectra were gathered at the Harvard-Smithsonian Center for Astrophysics (CfA) between 2004 and 2009. For 53 SNe, these are the first published spectra. The data coverage range from mere identification (1-3 spectra) for a few SNe to extensive series of observations (10-30 spectra) that trace the spectral evolution for others, with an average of 9 spectra per SN. For 44 SNe of the 73 SNe presented here, we have well-determined dates of maximum light to determine the phase of each spectrum. Our sample constitutes the most extensive spectral library of stripped-envelope SNe to date. We provide very early coverage (as early as 30 days before V-band max) for photospheric spectra, as well as late-time nebular coverage when the innermost regions of the SNe are visible (as late as 2 years after explosion, while for SN1993J, we have data as late as 11.6 years). This data set has homogeneous observations and reductions that allow us to study the spectroscopic diversity of these classes of stripped SNe and to compare these to SNe associated with gamma-ray bursts. We undertake these matters in follow-up papers.
We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe-I) PTF12dam and iPTF13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at lat e times. The early bump in PTF12dam is very similar in duration (~10 days) and brightness relative to the main peak (2-3 mag fainter) compared to those observed in other SLSNe-I. In contrast, the long-duration (>30 days) early excess emission in iPTF13dcc, whose brightness competes with that of the main peak, appears to be of a different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time light-curve decline in both SLSNe is suggestively close to that expected from the radioactive decay of $^{56}$Ni and $^{56}$Co, the amount of nickel required to power the full light curves is too large considering the estimated ejecta mass. The magnetar model including an increasing escape fraction provides a reasonable description of the PTF12dam observations. However, neither the basic nor the double-peaked magnetar model is capable of reproducing the iPTF13dcc light curve. A model combining a shock breakout in an extended envelope with late-time magnetar energy injection provides a reasonable fit to the iPTF13dcc observations. Finally, we find that the light curves of both PTF12dam and iPTF13dcc can be adequately fit with the circumstellar medium (CSM) interaction model.
Ground-based optical spectra and Hubble Space Telescope images of ten core-collapse supernovae (CCSNe) obtained several years to decades after outburst are analyzed with the aim of understanding the general properties of their late-time emissions. Ne w observations of SN 1957D, 1970G, 1980K, and 1993J are included as part of the study. Blueshifted line emissions in oxygen and/or hydrogen with conspicuous line substructure are a common and long-lasting phenomenon in the late-time spectra. Followed through multiple epochs, changes in the relative strengths and velocity widths of the emission lines are consistent with expectations for emissions produced by interaction between SN ejecta and the progenitor stars circumstellar material. The most distinct trend is an increase in the strength of [O III]/([O I]+[O II]) with age, and a decline in Halpha/([O I]+[O II]) which is broadly consistent with the view that the reverse shock has passed through the H envelope of the ejecta in many of these objects. We also present a spatially integrated spectrum of the young Galactic supernova remnant Cassiopeia A (Cas A). Similarities observed between the emission line profiles of the 330 yr old Cas A remnant and decades old CCSNe suggest that observed emission line asymmetry in evolved CCSN spectra may be associated with dust in the ejecta, and that minor peak substructure typically interpreted as clumps or blobs of ejecta may instead be linked with large-scale rings of SN debris.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا