ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancing Social Relation Inference with Concise Interaction Graph and Discriminative Scene Representation

193   0   0.0 ( 0 )
 نشر من قبل Hanling Yi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

There has been a recent surge of research interest in attacking the problem of social relation inference based on images. Existing works classify social relations mainly by creating complicated graphs of human interactions, or learning the foreground and/or background information of persons and objects, but ignore holistic scene context. The holistic scene refers to the functionality of a place in images, such as dinning room, playground and office. In this paper, by mimicking human understanding on images, we propose an approach of textbf{PR}actical textbf{I}nference in textbf{S}ocial rtextbf{E}lation (PRISE), which concisely learns interactive features of persons and discriminative features of holistic scenes. Technically, we develop a simple and fast relational graph convolutional network to capture interactive features of all persons in one image. To learn the holistic scene feature, we elaborately design a contrastive learning task based on image scene classification. To further boost the performance in social relation inference, we collect and distribute a new large-scale dataset, which consists of about 240 thousand unlabeled images. The extensive experimental results show that our novel learning framework significantly beats the state-of-the-art methods, e.g., PRISE achieves 6.8$%$ improvement for domain classification in PIPA dataset.



قيم البحث

اقرأ أيضاً

104 - Jun Li , Daoyu Lin , Yang Wang 2019
Learning powerful discriminative features for remote sensing image scene classification is a challenging computer vision problem. In the past, most classification approaches were based on handcrafted features. However, most recent approaches to remot e sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is only to use original RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show class activation map (CAM) encoded CNN models, codenamed DDRL-AM, trained using original RGB patches and attention map based class information provide complementary information to the standard RGB deep models. To the best of our knowledge, we are the first to investigate attention information encoded CNNs. Additionally, to enhance the discriminability, we further employ a recently developed object function called center loss, which has proved to be very useful in face recognition. Finally, our framework provides attention guidance to the model in an end-to-end fashion. Extensive experiments on two benchmark datasets show that our approach matches or exceeds the performance of other methods.
Inferring social relations from dialogues is vital for building emotionally intelligent robots to interpret human language better and act accordingly. We model the social network as an And-or Graph, named SocAoG, for the consistency of relations amon g a group and leveraging attributes as inference cues. Moreover, we formulate a sequential structure prediction task, and propose an $alpha$-$beta$-$gamma$ strategy to incrementally parse SocAoG for the dynamic inference upon any incoming utterance: (i) an $alpha$ process predicting attributes and relations conditioned on the semantics of dialogues, (ii) a $beta$ process updating the social relations based on related attributes, and (iii) a $gamma$ process updating individuals attributes based on interpersonal social relations. Empirical results on DialogRE and MovieGraph show that our model infers social relations more accurately than the state-of-the-art methods. Moreover, the ablation study shows the three processes complement each other, and the case study demonstrates the dynamic relational inference.
Pedestrian trajectory prediction is valuable for understanding human motion behaviors and it is challenging because of the social influence from other pedestrians, the scene constraints and the multimodal possibilities of predicted trajectories. Most existing methods only focus on two of the above three key elements. In order to jointly consider all these elements, we propose a novel trajectory prediction method named Scene Gated Social Graph (SGSG). In the proposed SGSG, dynamic graphs are used to describe the social relationship among pedestrians. The social and scene influences are taken into account through the scene gated social graph features which combine the encoded social graph features and semantic scene features. In addition, a VAE module is incorporated to learn the scene gated social feature and sample latent variables for generating multiple trajectories that are socially and environmentally acceptable. We compare our SGSG against twenty state-of-the-art pedestrian trajectory prediction methods and the results show that the proposed method achieves superior performance on two widely used trajectory prediction benchmarks.
Panorama images have a much larger field-of-view thus naturally encode enriched scene context information compared to standard perspective images, which however is not well exploited in the previous scene understanding methods. In this paper, we prop ose a novel method for panoramic 3D scene understanding which recovers the 3D room layout and the shape, pose, position, and semantic category for each object from a single full-view panorama image. In order to fully utilize the rich context information, we design a novel graph neural network based context model to predict the relationship among objects and room layout, and a differentiable relationship-based optimization module to optimize object arrangement with well-designed objective functions on-the-fly. Realizing the existing data are either with incomplete ground truth or overly-simplified scene, we present a new synthetic dataset with good diversity in room layout and furniture placement, and realistic image quality for total panoramic 3D scene understanding. Experiments demonstrate that our method outperforms existing methods on panoramic scene understanding in terms of both geometry accuracy and object arrangement. Code is available at https://chengzhag.github.io/publication/dpc.
75 - Wanhua Li , Yueqi Duan , Jiwen Lu 2020
Human beings are fundamentally sociable -- that we generally organize our social lives in terms of relations with other people. Understanding social relations from an image has great potential for intelligent systems such as social chatbots and perso nal assistants. In this paper, we propose a simpler, faster, and more accurate method named graph relational reasoning network (GR2N) for social relation recognition. Different from existing methods which process all social relations on an image independently, our method considers the paradigm of jointly inferring the relations by constructing a social relation graph. Furthermore, the proposed GR2N constructs several virtual relation graphs to explicitly grasp the strong logical constraints among different types of social relations. Experimental results illustrate that our method generates a reasonable and consistent social relation graph and improves the performance in both accuracy and efficiency.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا