ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective shell-model interaction for nuclei southeast of $^{100}$Sn

127   0   0.0 ( 0 )
 نشر من قبل Zhonghao Sun
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct an effective shell-model interaction for the valence space spanned by single-particle neutron and single-hole proton states in $^{100}$Sn. Starting from chiral nucleon-nucleon and three-nucleon forces and single-reference coupled-cluster theory for $^{100}$Sn we apply a second similarity transformation that decouples the valence space. The particle-particle components of the resulting effective interaction can be used in shell model calculations for neutron deficient tin isotopes. The hole-hole interaction can be used to calculate the $N = 50$ isotones south of $^{100}$Sn, and the full particle-hole interaction describes nuclei in the region southeast of $^{100}$Sn. We compute low-lying excited states in selected nuclei southeast of $^{100}$Sn, and find reasonable agreement with data. The presented techniques can also be applied to construct effective shell-model interactions for other regions of the nuclear chart.



قيم البحث

اقرأ أيضاً

The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interactions approach formu lated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow Shell Model (GSM) provides such a framework as it is capable of describing resonant and non-resonant many-body states on equal footing. To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In this study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the $psdf$ shell model space. The resulting interaction is expected to describe nuclei with $5 leqslant A leqslant 12$ at the $p-sd$-shell interface. The optimized one-body potential reproduces nucleon-$^4$He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the Helium, Lithium, and Beryllium isotopes up to $A=9$. A very good agreement with experiment was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities and excitation spectra of light nuclei with quantified uncertainties. The new interaction will enable comprehensive and fully quantified studies of structure and reactions aspects of nuclei from the $psd$ region of the nuclear chart.
We present an approach to derive effective shell-model interactions from microscopic nuclear forces. The similarity-transformed coupled-cluster Hamiltonian decouples the single-reference state of a closed-shell nucleus and provides us with a core for the shell model. We use a second similarity transformation to decouple a shell-model space from the excluded space. We show that the three-body terms induced by both similarity transformations are crucial for an accurate computation of ground and excited states. As a proof of principle we use a nucleon-nucleon interaction from chiral effective field theory, employ a $^4$He core, and compute low-lying states of $^{6-8}$He and $^{6-8}$Li in $p$-shell model spaces. Our results agree with benchmarks from full configuration interaction.
We discuss the present status of the description of the structure of the very neutron rich nuclei, in the framework of modern large scale shell model calculations. Particular attention is paid to the interaction related issues, as well as to the prob lems of the shell model approach at the neutron drip line. We present detailed results for nuclei around N=20 and, more briefly, we discuss some salient features of the regions close to N=8, 28 and 40. We show that most experimental features can be understood in a shell model context.
A systematic shell model description of the experimental Gamow-Teller transition strength distributions in $^{42}$Ti, $^{46}$Cr, $^{50}$Fe and $^{54}$Ni is presented. These transitions have been recently measured via $beta$ decay of these $T_z$=-1 nu clei, produced in fragmentation reactions at GSI and also with ($^3${He},$t$) charge-exchange (CE) reactions corresponding to $T_z = + 1$ to $T_z = 0$ carried out at RCNP-Osaka.The calculations are performed in the $pf$ model space, using the GXPF1a and KB3G effective interactions. Qualitative agreement is obtained for the individual transitions, while the calculated summed transition strengths closely reproduce the observed ones.
We report on a study of exotic nuclei around doubly magic 132Sn in terms of the shell model employing a realistic effective interaction derived from the CD-Bonn nucleon-nucleon potential. The short-range repulsion of the bare potential is renormalize d by constructing a smooth low-momentum potential, V-low-k, that is used directly as input for the calculation of the effective interaction. In this paper we focus attention on the nuclei 134Sn and 135Sb which, with an N/Z ratio of 1.68 and 1.65, respectively, are at present the most exotic nuclei beyond 132Sn for which information exists on excited states. Comparison shows that the calculated results for both nuclei are in very good agreement with the experimental data. We present our predictions of the hitherto unknown spectrum of 136Sn.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا