ﻻ يوجد ملخص باللغة العربية
We construct an effective shell-model interaction for the valence space spanned by single-particle neutron and single-hole proton states in $^{100}$Sn. Starting from chiral nucleon-nucleon and three-nucleon forces and single-reference coupled-cluster theory for $^{100}$Sn we apply a second similarity transformation that decouples the valence space. The particle-particle components of the resulting effective interaction can be used in shell model calculations for neutron deficient tin isotopes. The hole-hole interaction can be used to calculate the $N = 50$ isotones south of $^{100}$Sn, and the full particle-hole interaction describes nuclei in the region southeast of $^{100}$Sn. We compute low-lying excited states in selected nuclei southeast of $^{100}$Sn, and find reasonable agreement with data. The presented techniques can also be applied to construct effective shell-model interactions for other regions of the nuclear chart.
The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interactions approach formu
We present an approach to derive effective shell-model interactions from microscopic nuclear forces. The similarity-transformed coupled-cluster Hamiltonian decouples the single-reference state of a closed-shell nucleus and provides us with a core for
We discuss the present status of the description of the structure of the very neutron rich nuclei, in the framework of modern large scale shell model calculations. Particular attention is paid to the interaction related issues, as well as to the prob
A systematic shell model description of the experimental Gamow-Teller transition strength distributions in $^{42}$Ti, $^{46}$Cr, $^{50}$Fe and $^{54}$Ni is presented. These transitions have been recently measured via $beta$ decay of these $T_z$=-1 nu
We report on a study of exotic nuclei around doubly magic 132Sn in terms of the shell model employing a realistic effective interaction derived from the CD-Bonn nucleon-nucleon potential. The short-range repulsion of the bare potential is renormalize