ﻻ يوجد ملخص باللغة العربية
The concept of quantum discord aims at unveiling quantum correlations that go beyond those described by entanglement. Its original formulation [J. Phys. A 34, 6899 (2001); Phys. Rev. Lett 88, 017901 (2002)] is difficult to compute even for the simplest case of two-qubits systems. Alternative formulations have been developed to address this drawback, such as the geometric measure of quantum discord [Phys. Rev. A 87, 062303 (2013)] and the local quantum uncertainty [Phys. Rev. Lett 110, 240402 (2013)] that can be evaluated in closed form for some quantum systems, such as two-qubit systems. We show here that these two measures of quantum discord are equivalent for 2 x D dimensional bipartite quantum systems. By considering the relevant example of N00N states for phase estimation in lossy environments, we also show that both metrics of quantum discord quantify the decrease of quantum Fisher information of the phase estimation protocol. Given their ease of computation in 2 x D bipartite systems, the geometric measure of quantum discord and the local quantum uncertainty demonstrate their relevance as computable measures of quantum discord.
Among various definitions of quantum correlations, quantum discord has attracted considerable attention. To find analytical expression of quantum discord is an intractable task. Exact results are known only for very special states, namely, two-qubit
We discuss some properties of the quantum discord based on the geometric distance advanced by Dakic, Vedral, and Brukner [Phys. Rev. Lett. {bf 105}, 190502 (2010)], with emphasis on Werner- and MEM-states. We ascertain just how good the measure is in
A symmetric measure of quantum correlation based on the Hilbert-Schmidt distance is presented in this paper. For two-qubit states, we simplify considerably the optimization procedure so that numerical evaluation can be performed efficiently. Analytic
We describe an efficient DQC1-algorithm to quantify the amount of Geometric Quantum Discord present in the output state of a DQC1 computation. DQC1 is a model of computation that utilizes separable states to solve a problem with no known efficient cl
Local quantum uncertainty captures purely quantum correlations excluding their classical counterpart. This measure is quantum discord type, however with the advantage that there is no need to carry out the complicated optimization procedure over meas