ﻻ يوجد ملخص باللغة العربية
We introduce a new image segmentation task, termed Entity Segmentation (ES) with the aim to segment all visual entities in an image without considering semantic category labels. It has many practical applications in image manipulation/editing where the segmentation mask quality is typically crucial but category labels are less important. In this setting, all semantically-meaningful segments are equally treated as categoryless entities and there is no thing-stuff distinction. Based on our unified entity representation, we propose a center-based entity segmentation framework with two novel modules to improve mask quality. Experimentally, both our new task and framework demonstrate superior advantages as against existing work. In particular, ES enables the following: (1) merging multiple datasets to form a large training set without the need to resolve label conflicts; (2) any model trained on one dataset can generalize exceptionally well to other datasets with unseen domains. Our code is made publicly available at https://github.com/dvlab-research/Entity.
Current state-of-the-art object detection and segmentation methods work well under the closed-world assumption. This closed-world setting assumes that the list of object categories is available during training and deployment. However, many real-world
With the recent progress in Generative Adversarial Networks (GANs), it is imperative for media and visual forensics to develop detectors which can identify and attribute images to the model generating them. Existing works have shown to attribute imag
In this paper, we propose and study Open-World Tracking (OWT). Open-world tracking goes beyond current multi-object tracking benchmarks and methods which focus on tracking object classes that belong to a predefined closed-set of frequently observed o
As autonomous decision-making agents move from narrow operating environments to unstructured worlds, learning systems must move from a closed-world formulation to an open-world and few-shot setting in which agents continuously learn new classes from
In semantic segmentation, we aim to train a pixel-level classifier to assign category labels to all pixels in an image, where labeled training images and unlabeled test images are from the same distribution and share the same label set. However, in a