ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic constant-roll inflation for the Dirac-Born-Infeld model

135   0   0.0 ( 0 )
 نشر من قبل Tuan Do
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study a non-canonical extension of a supergravity-motivated model acting as a vivid counterexample to the cosmic no-hair conjecture due to its unusual coupling between scalar and electromagnetic fields. In particular, a canonical scalar field is replaced by the string-inspired Dirac-Born-Infeld one in this extension. As a result, exact anisotropic inflationary solutions for this Dirac-Born-Infeld model are figured out under a constant-roll condition. Furthermore, numerical calculations are performed to verify that these anisotropic constant-roll solutions are indeed attractive during their inflationary phase.



قيم البحث

اقرأ أيضاً

63 - Zhu Yi , Yungui Gong 2017
The primordial power spectra of scalar and tensor perturbations during slow-roll inflation are usually calculated with the method of Bessel function approximation. For constant-roll or ultra slow-roll inflation, the method of Bessel function approxim ation may be invalid. We compare the numerical results with the analytical results derived from the Bessel function approximation, and we find that they differ significantly on super-horizon scales if the constant slow-roll parameter $eta_H$ is not small. More accurate method is needed for calculating the primordial power spectrum for constant-roll inflation.
56 - Asuka Ito , Jiro Soda 2017
We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space.
77 - Qing Gao 2018
We discuss the constant-roll inflation with constant $epsilon_2$ and constant $bareta$. By using the method of Bessel function approximation, the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts, an d the tensor to scalar ratio are derived up to the first order of $epsilon_1$. The model with constant $epsilon_2$ is ruled out by the observations at the $3sigma$ confidence level, and the model with constant $bareta$ is consistent with the observations at the $1sigma$ confidence level. The potential for the model with constant $bareta$ is also obtained from the Hamilton-Jacobi equation. Although the observations constrain the constant-roll inflation to be slow-roll inflation, the $n_s-r$ results from the constant-roll inflation are not the same as those from the slow-roll inflation even when $baretasim 0.01$.
205 - Inyong Cho , Jinn-Ouk Gong 2015
We investigate the scalar and tensor spectral indices of the quadratic inflation model in Eddington-inspired Born-Infeld (EiBI) gravity. We find that the EiBI corrections to the spectral indices are of second and first order in the slow-roll approxim ation for the scalar and tensor perturbations respectively. This is very promising since the quadratic inflation model in general relativity provides a very nice fit for the spectral indices. Together with the suppression of the tensor-to-scalar ratio EiBI inflation agrees well with the observational data.
77 - Qing Gao , Yungui Gong , Qin Fei 2018
For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio up to the first order by using the method of Bessel function ap proximation. The derived $n_s-r$ results for the constant-roll inflation are also compared with the observations, we find that only one constant-roll inflation is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا