ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-size effects and thermodynamic limit in one-dimensional Janus fluids

118   0   0.0 ( 0 )
 نشر من قبل Andres Santos
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The equilibrium properties of a Janus fluid made of two-face particles confined to a one-dimensional channel are revisited. The exact Gibbs free energy for a finite number of particles $N$ is exactly derived for both quenched and annealed realizations. It is proved that the results for both classes of systems tend in the thermodynamic limit ($Ntoinfty$) to a common expression recently derived (Maestre M A G and Santos A 2020 J Stat Mech 063217). The theoretical finite-size results are particularized to the Kern--Frenkel model and confirmed by Monte Carlo simulations for quenched and (both biased and unbiased) annealed systems.



قيم البحث

اقرأ أيضاً

The equilibrium properties of a Janus fluid confined to a one-dimensional channel are exactly derived. The fluid is made of particles with two faces (active and passive), so that the pair interaction is that of hard spheres, except if the two active faces are in front of each other, in which case the interaction has a square-well attractive tail. Our exact solution refers to quenched systems (i.e., each particle has a fixed face orientation), but we argue by means of statistical-mechanical tools that the results also apply to annealed systems (i.e., each particle can flip its orientation) in the thermodynamic limit. Comparison between theoretical results and Monte Carlo simulations for quenched and annealed systems, respectively, shows an excellent agreement.
The well-known classical nucleation theory (CNT) for the free energy barrier towards formation of a nucleus of critical size of the new stable phase within the parent metastable phase fails to take into account the influence of other metastable phase s having density/order intermediate between the parent metastable phase and the final stable phase. This lacuna can be more serious than capillary approximation or spherical shape assumption made in CNT. This issue is particularly significant in ice nucleation because liquid water shows rich phase diagram consisting of two (high and low density) liquid phases in supercooled state. The explanations of thermodynamic and dynamic anomalies of supercooled water often invoke the possible influence of a liquid-liquid transition between two metastable liquid phases. To investigate both the role of thermodynamic anomalies and presence of distinct metastable liquid phases in supercooled water on ice nucleation, we employ density functional theoretical approach to find nucleation free energy barrier in different regions of phase diagram. The theory makes a number of striking predictions, such as a dramatic lowering of nucleation barrier due to presence of a metastable intermediate phase and crossover in the dependence of free energy barrier on temperature near liquid-liquid critical point. These predictions can be tested by computer simulations as well as by controlled experiments.
The chemical potentials of multicomponent fluids are derived in terms of the pair correlation functions for arbitrary number of components, interaction potentials, and dimensionality. The formally exact result is particularized to hard-sphere mixture s with zero or positive nonadditivity. As a simple application, the chemical potentials of three-dimensional additive hard-sphere mixtures are derived from the Percus-Yevick theory and the associated equation of state is obtained. This Percus-Yevick chemical-route equation of state is shown to be more accurate than the virial equation of state. An interpolation between the chemical-potential and compressibility routes exhibits a better performance than the well-known Boublik-Mansoori-Carnahan-Starling-Leland equation of state.
By calculating correlation functions for the Lieb-Liniger model based on the algebraic Bethe ansatz method, we conduct a finite-size scaling analysis of the eigenstate thermalization hypothesis (ETH) which is considered to be a possible mechanism of thermalization in isolated quantum systems. We find that the ETH in the weak sense holds in the thermodynamic limit even for an integrable system although it does not hold in the strong sense. Based on the result of the finite-size scaling analysis, we compare the contribution of the weak ETH to thermalization with that of yet another thermalization mechanism, the typicality, and show that the former gives only a logarithmic correction to the latter.
69 - J. Largo 2003
We have obtained by Monte Carlo NVT simulations the constant-volume excess heat capacity of square-well fluids for several temperatures, densities and potential widths. Heat capacity is a thermodynamic property much more sensitive to the accuracy of a theory than other thermodynamic quantities, such as the compressibility factor. This is illustrated by comparing the reported simulation data for the heat capacity with the theoretical predictions given by the Barker-Henderson perturbation theory as well as with those given by a non-perturbative theoretical model based on Baxters solution of the Percus-Yevick integral equation for sticky hard spheres. Both theories give accurate predictions for the equation of state. By contrast, it is found that the Barker-Henderson theory strongly underestimates the excess heat capacity for low to moderate temperatures, whereas a much better agreement between theory and simulation is achieved with the non-perturbative theoretical model, particularly for small well widths, although the accuracy of the latter worsens for high densities and low temperatures, as the well width increases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا