ﻻ يوجد ملخص باللغة العربية
We describe a general-purpose framework to design quantum algorithms relying upon an efficient handling of arrays. The corner-stone of the framework is the direct embedding of information into quantum amplitudes, thus avoiding the need to deal with square roots or encode the information in registers. We discuss the entire pipeline, from data loading to information extraction. Particular attention is devoted to the definition of an efficient tool-kit of quantum arithmetic operations on arrays. We comment on strong and weak points of the proposed manipulations, especially in relation to an effective exploitation of quantum parallelism. Eventually, we give explicit examples regarding the manipulation of generic oracles.
Quantum algorithm involves the manipulation of amplitudes and computational basis, of which manipulating basis is largely a quantum analogue of classical computing that is always a major contributor to the complexity. In order to make full use of qua
Quantum networks provide a platform for astronomical interferometers capable of imaging faint stellar objects. In a recent work [arXiv:1809.01659], we presented a protocol that circumvents transmission losses with efficient use of quantum resources a
We present some basic integer arithmetic quantum circuits, such as adders and multipliers-accumulators of various forms, as well as diagonal operators, which operate on multilevel qudits. The integers to be processed are represented in an alternative
We propose a new method to directly measure a general multi-particle quantum wave function, a single matrix element in a multi-particle density matrix, by quantum teleportation. The density matrix element is embedded in a virtual logical qubit and is
We evaluate the performance of quantum arithmetic algorithms run on a distributed quantum computer (a quantum multicomputer). We vary the node capacity and I/O capabilities, and the network topology. The tradeoff of choosing between gates executed re