ترغب بنشر مسار تعليمي؟ اضغط هنا

Viewpoint-Invariant Exercise Repetition Counting

80   0   0.0 ( 0 )
 نشر من قبل Yu Cheng Hsu Mr
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Counting the repetition of human exercise and physical rehabilitation is a common task in rehabilitation and exercise training. The existing vision-based repetition counting methods less emphasize the concurrent motions in the same video. This work presents a vision-based human motion repetition counting applicable to counting concurrent motions through the skeleton location extracted from various pose estimation methods. The presented method was validated on the University of Idaho Physical Rehabilitation Movements Data Set (UI-PRMD), and MM-fit dataset. The overall mean absolute error (MAE) for mm-fit was 0.06 with off-by-one Accuracy (OBOA) 0.94. Overall MAE for UI-PRMD dataset was 0.06 with OBOA 0.95. We have also tested the performance in a variety of camera locations and concurrent motions with conveniently collected video with overall MAE 0.06 and OBOA 0.88. The proposed method provides a view-angle and motion agnostic concurrent motion counting. This method can potentially use in large-scale remote rehabilitation and exercise training with only one camera.



قيم البحث

اقرأ أيضاً

We present an approach for estimating the period with which an action is repeated in a video. The crux of the approach lies in constraining the period prediction module to use temporal self-similarity as an intermediate representation bottleneck that allows generalization to unseen repetitions in videos in the wild. We train this model, called Repnet, with a synthetic dataset that is generated from a large unlabeled video collection by sampling short clips of varying lengths and repeating them with different periods and counts. This combination of synthetic data and a powerful yet constrained model, allows us to predict periods in a class-agnostic fashion. Our model substantially exceeds the state of the art performance on existing periodicity (PERTUBE) and repetition counting (QUVA) benchmarks. We also collect a new challenging dataset called Countix (~90 times larger than existing datasets) which captures the challenges of repetition counting in real-world videos. Project webpage: https://sites.google.com/view/repnet .
In this paper, we investigate the roles that social robots can take in physical exercise with human partners. In related work, robots or virtual intelligent agents take the role of a coach or instructor whereas in other approaches they are used as mo tivational aids. These are two paradigms, so to speak, within the small but growing area of robots for social exercise. We designed an online questionnaire to test whether the preferred role in which people want to see robots would be the companion or the coach. The questionnaire asks people to imagine working out with a robot with the help of three utilized questionnaires: (1) CART-Q which is used for judging coach-athlete relationships, (2) the mind perception questionnaire and (3) the System Usability Scale (SUS). We present the methodology, some preliminary results as well as our intended future work on personal robots for coaching.
Sign language is a gesture based symbolic communication medium among speech and hearing impaired people. It also serves as a communication bridge between non-impaired population and impaired population. Unfortunately, in most situations a non-impaire d person is not well conversant in such symbolic languages which restricts natural information flow between these two categories of population. Therefore, an automated translation mechanism can be greatly useful that can seamlessly translate sign language into natural language. In this paper, we attempt to perform recognition on 30 basic Indian sign gestures. Gestures are represented as temporal sequences of 3D depth maps each consisting of 3D coordinates of 20 body joints. A recurrent neural network (RNN) is employed as classifier. To improve performance of the classifier, we use geometric transformation for alignment correction of depth frames. In our experiments the model achieves 84.81% accuracy.
We present a novel Relightable Neural Renderer (RNR) for simultaneous view synthesis and relighting using multi-view image inputs. Existing neural rendering (NR) does not explicitly model the physical rendering process and hence has limited capabilit ies on relighting. RNR instead models image formation in terms of environment lighting, object intrinsic attributes, and light transport function (LTF), each corresponding to a learnable component. In particular, the incorporation of a physically based rendering process not only enables relighting but also improves the quality of view synthesis. Comprehensive experiments on synthetic and real data show that RNR provides a practical and effective solution for conducting free-viewpoint relighting.
Semantic keypoints provide concise abstractions for a variety of visual understanding tasks. Existing methods define semantic keypoints separately for each category with a fixed number of semantic labels in fixed indices. As a result, this keypoint r epresentation is in-feasible when objects have a varying number of parts, e.g. chairs with varying number of legs. We propose a category-agnostic keypoint representation, which combines a multi-peak heatmap (StarMap) for all the keypoints and their corresponding features as 3D locations in the canonical viewpoint (CanViewFeature) defined for each instance. Our intuition is that the 3D locations of the keypoints in canonical object views contain rich semantic and compositional information. Using our flexible representation, we demonstrate competitive performance in keypoint detection and localization compared to category-specific state-of-the-art methods. Moreover, we show that when augmented with an additional depth channel (DepthMap) to lift the 2D keypoints to 3D, our representation can achieve state-of-the-art results in viewpoint estimation. Finally, we show that our category-agnostic keypoint representation can be generalized to novel categories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا