ترغب بنشر مسار تعليمي؟ اضغط هنا

Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal Sentiment Analysis

82   0   0.0 ( 0 )
 نشر من قبل Soujanya Poria
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multimodal sentiment analysis aims to extract and integrate semantic information collected from multiple modalities to recognize the expressed emotions and sentiment in multimodal data. This research areas major concern lies in developing an extraordinary fusion scheme that can extract and integrate key information from various modalities. However, one issue that may restrict previous work to achieve a higher level is the lack of proper modeling for the dynamics of the competition between the independence and relevance among modalities, which could deteriorate fusion outcomes by causing the collapse of modality-specific feature space or introducing extra noise. To mitigate this, we propose the Bi-Bimodal Fusion Network (BBFN), a novel end-to-end network that performs fusion (relevance increment) and separation (difference increment) on pairwise modality representations. The two parts are trained simultaneously such that the combat between them is simulated. The model takes two bimodal pairs as input due to the known information imbalance among modalities. In addition, we leverage a gated control mechanism in the Transformer architecture to further improve the final output. Experimental results on three datasets (CMU-MOSI, CMU-MOSEI, and UR-FUNNY) verifies that our model significantly outperforms the SOTA. The implementation of this work is available at https://github.com/declare-lab/multimodal-deep-learning.



قيم البحث

اقرأ أيضاً

We tackle the crucial challenge of fusing different modalities of features for multimodal sentiment analysis. Mainly based on neural networks, existing approaches largely model multimodal interactions in an implicit and hard-to-understand manner. We address this limitation with inspirations from quantum theory, which contains principled methods for modeling complicated interactions and correlations. In our quantum-inspired framework, the word interaction within a single modality and the interaction across modalities are formulated with superposition and entanglement respectively at different stages. The complex-valued neural network implementation of the framework achieves comparable results to state-of-the-art systems on two benchmarking video sentiment analysis datasets. In the meantime, we produce the unimodal and bimodal sentiment directly from the model to interpret the entangled decision.
In multimodal sentiment analysis (MSA), the performance of a model highly depends on the quality of synthesized embeddings. These embeddings are generated from the upstream process called multimodal fusion, which aims to extract and combine the input unimodal raw data to produce a richer multimodal representation. Previous work either back-propagates the task loss or manipulates the geometric property of feature spaces to produce favorable fusion results, which neglects the preservation of critical task-related information that flows from input to the fusion results. In this work, we propose a framework named MultiModal InfoMax (MMIM), which hierarchically maximizes the Mutual Information (MI) in unimodal input pairs (inter-modality) and between multimodal fusion result and unimodal input in order to maintain task-related information through multimodal fusion. The framework is jointly trained with the main task (MSA) to improve the performance of the downstream MSA task. To address the intractable issue of MI bounds, we further formulate a set of computationally simple parametric and non-parametric methods to approximate their truth value. Experimental results on the two widely used datasets demonstrate the efficacy of our approach. The implementation of this work is publicly available at https://github.com/declare-lab/Multimodal-Infomax.
The wide application of smart devices enables the availability of multimodal data, which can be utilized in many tasks. In the field of multimodal sentiment analysis (MSA), most previous works focus on exploring intra- and inter-modal interactions. H owever, training a network with cross-modal information (language, visual, audio) is still challenging due to the modality gap, and existing methods still cannot ensure to sufficiently learn intra-/inter-modal dynamics. Besides, while learning dynamics within each sample draws great attention, the learning of inter-class relationships is neglected. Moreover, the size of datasets limits the generalization ability of existing methods. To address the afore-mentioned issues, we propose a novel framework HyCon for hybrid contrastive learning of tri-modal representation. Specifically, we simultaneously perform intra-/inter-modal contrastive learning and semi-contrastive learning (that is why we call it hybrid contrastive learning), with which the model can fully explore cross-modal interactions, preserve inter-class relationships and reduce the modality gap. Besides, a refinement term is devised to prevent the model falling into a sub-optimal solution. Moreover, HyCon can naturally generate a large amount of training pairs for better generalization and reduce the negative effect of limited datasets. Extensive experiments on public datasets demonstrate that our proposed method outperforms existing works.
311 - Zilong Wang , Zhaohong Wan , 2020
Multimodal sentiment analysis is an important research area that predicts speakers sentiment tendency through features extracted from textual, visual and acoustic modalities. The central challenge is the fusion method of the multimodal information. A variety of fusion methods have been proposed, but few of them adopt end-to-end translation models to mine the subtle correlation between modalities. Enlightened by recent success of Transformer in the area of machine translation, we propose a new fusion method, TransModality, to address the task of multimodal sentiment analysis. We assume that translation between modalities contributes to a better joint representation of speakers utterance. With Transformer, the learned features embody the information both from the source modality and the target modality. We validate our model on multiple multimodal datasets: CMU-MOSI, MELD, IEMOCAP. The experiments show that our proposed method achieves the state-of-the-art performance.
139 - Wenmeng Yu , Hua Xu , Ziqi Yuan 2021
Representation Learning is a significant and challenging task in multimodal learning. Effective modality representations should contain two parts of characteristics: the consistency and the difference. Due to the unified multimodal annotation, existi ng methods are restricted in capturing differentiated information. However, additional uni-modal annotations are high time- and labor-cost. In this paper, we design a label generation module based on the self-supervised learning strategy to acquire independent unimodal supervisions. Then, joint training the multi-modal and uni-modal tasks to learn the consistency and difference, respectively. Moreover, during the training stage, we design a weight-adjustment strategy to balance the learning progress among different subtasks. That is to guide the subtasks to focus on samples with a larger difference between modality supervisions. Last, we conduct extensive experiments on three public multimodal baseline datasets. The experimental results validate the reliability and stability of auto-generated unimodal supervisions. On MOSI and MOSEI datasets, our method surpasses the current state-of-the-art methods. On the SIMS dataset, our method achieves comparable performance than human-annotated unimodal labels. The full codes are available at https://github.com/thuiar/Self-MM.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا