ﻻ يوجد ملخص باللغة العربية
One-dimensional helical liquids can appear at boundaries of certain condensed matter systems. Two prime examples are the edge of a quantum spin Hall insulator, also known as a two-dimensional topological insulator, and the hinge of a three-dimensional second-order topological insulator. For these materials, the presence of a helical state at the boundary serves as a signature of their nontrivial bulk topology. Additionally, these boundary states are of interest themselves, as a novel class of strongly correlated low-dimensional systems with interesting potential applications. Here, we review existing results on such helical liquids in semiconductors. Our focus is on the theory, though we confront it with existing experiments. We discuss various aspects of the helical states, such as their realization, topological protection and stability, or possible experimental characterization. We lay emphasis on the hallmark of these states, being the prediction of a quantized electrical conductance. Since so far reaching a well-quantized conductance remained challenging experimentally, a large part of the review is a discussion of various backscattering mechanisms which have been invoked to explain this discrepancy. Finally, we include topics related to proximity-induced topological superconductivity in helical states, as an exciting application towards topological quantum computation with the resulting Majorana bound states.
We study the DC spin current induced into an unbiased quantum spin Hall system through a two-point contacts setup with time dependent electron tunneling amplitudes. By means of two external gates, it is possible to drive a current with spin-preservin
In the context of one-dimensional fermionic systems, helical Luttiger liquids are not only characterized by intriguing spin properties, but also by the possibility to be manipulated by means of electrostatic gates, exploiting finite Rashba coupling.
Domain walls in fractional quantum Hall ferromagnets are gapless helical one-dimensional channels formed at the boundaries of topologically distinct quantum Hall (QH) liquids. Na{i}vely, these helical domain walls (hDWs) constitute two counter-propag
Coulomb interaction has important consequences on the physics of quantum spin Hall edge states, weakening the topological protection via two-particle scattering and renormalizing both the velocity and charge of collective plasmon modes compared to th
We consider transport properties of a single edge of a two-dimensional topological insulators, in presence of Rashba spin-orbit coupling, driven by two external time-dependent voltages and connected to a thin superconductor. We focus on the case of a