ﻻ يوجد ملخص باللغة العربية
A challenge preventing successful inverse kinematics measurements with heavy nuclei that are not fully stripped is identifying and tagging the beam particles. For this purpose, the HEavy ISotope Tagger (HEIST) has been developed. HEIST utilizes two micro-channel plate timing detectors to measure time of flight, a multi-sampling ion chamber to measure energy loss, and a high purity Ge detector to identify isomer decays and calibrate the isotope identification system. HEIST has successfully identified $^{198}$Pb and other nearby nuclei at energies of about 75 MeV/A. In the experiment discussed, a typical cut containing 89% of all $^{198}$Pb$^{+80}$ in the beam had a purity of 86%. We examine the issues of charge state contamination. The observed charge state populations of these ions are presented and are moderately well described by the charge state model GLOBAL.
The design, construction and performance characteristics of a simple axial-field ionization chamber suitable for identifying ions in a radioactive beam are presented. Optimized for use with low-energy radioactive beams (< 5 MeV/A) the detector presen
To improve the ability of particle identification of the RIBLL2 separator at the HIRFL-CSR complex, a new high-performance detector for measuring fragment starting time and position at the F1 dispersive plane has been constructed and installed, and a
We have developed a method for achieving excellent resolving power in in-flight particle identification of radioactive isotope (RI) beams at the BigRIPS fragment separator at the RIKEN Nishina Center RI Beam Factory (RIBF). In the BigRIPS separator,
Production of a GeV photon beam by laser backward-Compton scattering has been playing an important role as a tool for nuclear and particle physics experiments. Its production techniques are now established at electron storage rings, which are increas
High electronic excitations in radiation of metallic targets with swift heavy ion beams at the coulomb barrier play a dominant role in the damaging processes of some metals. The inelastic thermal spike model was developed to describe tracks in materi