ﻻ يوجد ملخص باللغة العربية
In global efforts to reduce harmful greenhouse gas emissions from the transport sector, novel bio-hybrid liquid fuels from renewable energy and carbon sources can be a major form of energy for future propulsion systems due to their high energy density. A fundamental understanding of the spray and mixing performance of the new fuel candidates in combustion systems is necessary to design and develop the fuels for advanced combustion concepts. In the fuel design process, a large number of candidates is required to be screened to arrive at potential fuels for further detailed investigations. For such a screening process, three-dimensional (3D) simulation models are computationally too expensive and hence unfeasible. Therefore, in this paper, we present a fast, reduced-order model (ROM) for inert sprays. The model is based on the cross-sectionally averaged spray (CAS) model derived by Wan (1997) from 3D multiphase equations. The original model was first tested against a wide range of conditions and different fuels. The discrepancies between the CAS model and experimental data are addressed by integrating state-of-the-art breakup and evaporation models. A transport equation for vapor mass fraction is proposed, which is important for evaporation modeling. Furthermore, the model is extended to consider polydisperse droplets by modeling the droplet size distribution by commonly used presumed probability density functions, such as Rosin-Rammler, lognormal, and gamma distributions. The improved CAS model is capable of predicting trends in the macroscopic spray characteristics for a wide range of conditions and fuels. The computational cost of the CAS model is lower than the 3D simulation methods by up to 6 orders of magnitude depending on the method. This enables the model to be used not only for the rapid screening of novel fuel candidates, but also for other applications, where ROMs are useful.
This paper proposes a deep-learning based generalized reduced-order model (ROM) that can provide a fast and accurate prediction of the glottal flow during normal phonation. The approach is based on the assumption that the vibration of the vocal folds
This work presents a new multiphase SPH model that includes the shifting algorithm and a variable smoothing length formalism to simulate multi-phase flows with accuracy and proper interphase management. The implementation was performed in the DualSPH
In this paper a fully Eulerian solver for the study of multiphase flows for simulating the propagation of surface gravity waves over submerged bodies is presented. We solve the incompressible Navier-Stokes equations coupled with the volume of fluid t
In recent years, there have been a surge in applications of neural networks (NNs) in physical sciences. Although various algorithmic advances have been proposed, there are, thus far, limited number of studies that assess the interpretability of neura
In the present study, we propose a new surrogate model, called common kernel-smoothed proper orthogonal decomposition (CKSPOD), to efficiently emulate the spatiotemporal evolution of fluid flow dynamics. The proposed surrogate model integrates and ex