ترغب بنشر مسار تعليمي؟ اضغط هنا

Finding Better Precoding in Massive MIMO using Optimization Approach

106   0   0.0 ( 0 )
 نشر من قبل Evgeny Bobrov
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper studies the multi-user precoding problem as a non-convex optimization problem for wireless MIMO systems. In our work, we approximate the target Spectral Efficiency function with a novel computationally simpler function. Then, we reduce the precoding problem to an unconstrained optimization task using a special differential projection method and solve it by the Quasi-Newton L-BFGS iterative procedure to achieve gains in capacity. We are testing the proposed approach in several scenarios generated using Quadriga -- open-source software for generating realistic radio channel impulse response. Our method shows monotonic improvement over heuristic methods with reasonable computation time. The proposed L-BFGS optimization scheme is novel in this area and shows a significant advantage over the standard approaches.



قيم البحث

اقرأ أيضاً

In this paper, we consider massive multiple-input-multiple-output (MIMO) communication systems with a uniform planar array (UPA) at the base station (BS) and investigate the downlink precoding with imperfect channel state information (CSI). By exploi ting both instantaneous and statistical CSI, we aim to design precoding vectors to maximize the ergodic rate (e.g., sum rate, minimum rate and etc.) subject to a total transmit power constraint. To maximize an upper bound of the ergodic rate, we leverage the corresponding Lagrangian formulation and identify the structural characteristics of the optimal precoder as the solution to a generalized eigenvalue problem. As such, the high-dimensional precoder design problem turns into a low-dimensional power control problem. The Lagrange multipliers play a crucial role in determining both precoder directions and power parameters, yet are challenging to be solved directly. To figure out the Lagrange multipliers, we develop a general framework underpinned by a properly designed neural network that learns directly from CSI. To further relieve the computational burden, we obtain a low-complexity framework by decomposing the original problem into computationally efficient subproblems with instantaneous and statistical CSI handled separately. With the off-line pretrained neural network, the online computational complexity of precoding is substantially reduced compared with the existing iterative algorithm while maintaining nearly the same performance.
We address the problem of analyzing and classifying in groups the downlink channel environment in a millimeter-wavelength cell, accounting for path loss, multipath fading, and User Equipment (UE) blocking, by employing a hybrid propagation and multip ath fading model, thus using accurate inter-group interference modeling. The base station (BS) employs a large Uniform Planar Array (UPA) to facilitate massive Multiple-Input, Multiple-Output (MIMO) communications with high efficiency. UEs are equipped with a single antenna and are distributed uniformly within the cell. The key problem is analyzing and defining groups toward precoding. Because equitable type of throughput is desired between groups, Combined Frequency and Spatial Division and Multiplexing (CFSDM) prevails as necessary. We show that by employing three subcarrier frequencies, the UEs can be efficiently separated into high throughput groups, with each group employing Virtual Channel Model Beams (VCMB) based inner precoding, followed by efficient Multi-User Multiple-Input Multiple-Output (MU-MIMO) outer precoders. For each group, we study three different sub-grouping methods offering different advantages. We show that the improvement offered by Zero-Forcing Per-Group Precoding (ZF-PGP) over Zero-Forcing Precoding (ZFP) is very high.
Massive multiuser multiple-input multiple-output (MU-MIMO) has been the mainstream technology in fifth-generation wireless systems. To reduce high hardware costs and power consumption in massive MU-MIMO, low-resolution digital-to-analog converters (D AC) for each antenna and radio frequency (RF) chain in downlink transmission is used, which brings challenges for precoding design. To circumvent these obstacles, we develop a model-driven deep learning (DL) network for massive MU-MIMO with finite-alphabet precoding in this article. The architecture of the network is specially designed by unfolding an iterative algorithm. Compared with the traditional state-of-the-art techniques, the proposed DL-based precoder shows significant advantages in performance, complexity, and robustness to channel estimation error under Rayleigh fading channel.
84 - Evgeny Bobrov 2021
Modern wireless cellular networks use massive multiple-input multiple-output technology. This involves operations with an antenna array at a base station that simultaneously serves multiple mobile devices that also use multiple antennas on their side . For this, various Beamforming and Detection techniques are used, allowing each user to receive the signal intended for him from the base station. There is an important class of linear Precoding called Regularized Zero-Forcing. In this work, we propose a special kind of regularization matrix with different regularizations for different UE, using singular values of multi-antenna users. The proposed algorithm has a simple analytical formula and is provided with theoretical study. We also show the results in comparison with other linear Precoding algorithms on simulations with the Quadriga channel model. The proposed approach leads to a significant increase in quality with the same computation time as in the baseline methods.
In the context of cell-free massive multi-input multi-output (mMIMO), zero-forcing precoding (ZFP) requires the exchange of instantaneous channel state information and precoded data symbols via a fronthaul network. It causes considerable propagation and processing delays, which degrade performance. This letter analyzes the impact of channel aging on the performance of ZFP in cell-free mMIMO. The aging effects of not only user mobility but also phase noise are considered. Numerical results in terms of per-user spectral efficiency are illustrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا