ﻻ يوجد ملخص باللغة العربية
We investigate the effects of the kaon cloud on the electromagnetic and axial-vector form factors of the $Omega^-$ baryon within the framework of the chiral quark-soliton model. We first derive the profile function of the chiral soliton in such a way that the kaon Yukawa tail is properly produced self-consistently. Then, we compute the electromagnetic form factors of the $Omega^-$ baryon. The results for the electromagnetic form factors are compared with the lattice data. We find that the results with kaon tail employed are in far better agreement with the lattice data. We also study the axial-vector form factors of the $Omega^-$ baryon, examining the effects of the kaon cloud.
There are two mass generating mechanisms in the standard model of particle physics (SM). One is related to the Higgs boson and fairly well understood. The other is embedded in quantum chromodynamics (QCD), the SMs strong interaction piece; and althou
Kaon flavour physics has played in the 1960s and 1970s a very important role in the construction of the Standard Model (SM) and in the 1980s and 1990s in SM tests with the help of CP violation in $K_Ltopipi$ decays represented by $varepsilon_K$ and t
Understanding the origin and dynamics of hadron structure and in turn that of atomic nuclei is a central goal of nuclear physics. This challenge entails the questions of how does the roughly 1 GeV mass-scale that characterizes atomic nuclei appear; w
We investigate the strong force fields and stabilities of the nucleon and the singly heavy baryon $Sigma_c$ within the framework of the chiral quark-soliton model. Having constructed the pion mean fields in the presence of the $N_c-1$ level quarks se
In this short presentation I emphasize the increased importance of kaon flavour physics in the search for new physics (NP) that we should witness in the rest of this decade and in the next decade. The main actors will be the branching ratios for the