ﻻ يوجد ملخص باللغة العربية
Quantum metrology pursues high-precision measurements to physical quantities by using quantum resources. However, the decoherence generally hinders its performance. Previous work found that the metrology error tends to divergent in the long-encoding-time regime due to the Born-Markovian approximate decoherence, which is called no-go theorem of noisy quantum metrology. We here propose a Gaussian quantum metrology scheme using bimodal quantized optical fields as quantum probe. It achieves the precision of sub-Heisenberg limit in the ideal case. However, the Markovian decoherence causes the metrological error contributed from the center-of-mass mode of the probe to be divergent. A mechanism to remove this ostensible no-go theorem is found in the non-Markovian dynamics. Our result gives an efficient way to realize high-precision quantum metrology in practical continuous-variable systems.
Conventional strategies of quantum metrology are built upon POVMs, thereby possessing several general features, including the demolition of the state to be measured, the need of performing a number of measurements, and the degradation of performance
We discuss the quantum annealing of the fully-connected ferromagnetic $ p $-spin model in a dissipative environment at low temperature. This model, in the large $ p $ limit, encodes in its ground state the solution to the Grovers problem of searching
One dimensional topological insulators are characterized by edge states with exponentially small energies. According to one generalization of topological phases to non-Hermitian systems, a finite system in a non-trivial topological phase displays sur
We propose a scheme to realize high-precision quantum interferometry with entangled non-Gaussian states by driving the system through quantum phase transitions. The beam splitting, in which an initial non-degenerate groundstate evolves into a highly
We investigate two coupled nonlinear cavities that are coherently driven in a dissipative environment. We perform semiclassical, numerical and analytical quantum studies of this dimer model when both cavities are symmetrically driven. In the semiclas