ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy-Based Open-World Uncertainty Modeling for Confidence Calibration

83   0   0.0 ( 0 )
 نشر من قبل Bo Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Confidence calibration is of great importance to the reliability of decisions made by machine learning systems. However, discriminative classifiers based on deep neural networks are often criticized for producing overconfident predictions that fail to reflect the true correctness likelihood of classification accuracy. We argue that such an inability to model uncertainty is mainly caused by the closed-world nature in softmax: a model trained by the cross-entropy loss will be forced to classify input into one of $K$ pre-defined categories with high probability. To address this problem, we for the first time propose a novel $K$+1-way softmax formulation, which incorporates the modeling of open-world uncertainty as the extra dimension. To unify the learning of the original $K$-way classification task and the extra dimension that models uncertainty, we propose a novel energy-based objective function, and moreover, theoretically prove that optimizing such an objective essentially forces the extra dimension to capture the marginal data distribution. Extensive experiments show that our approach, Energy-based Open-World Softmax (EOW-Softmax), is superior to existing state-of-the-art methods in improving confidence calibration.



قيم البحث

اقرأ أيضاً

Deep neural networks (DNNs) are poorly calibrated when trained in conventional ways. To improve confidence calibration of DNNs, we propose a novel training method, distance-based learning from errors (DBLE). DBLE bases its confidence estimation on di stances in the representation space. In DBLE, we first adapt prototypical learning to train classification models. It yields a representation space where the distance between a test sample and its ground truth class center can calibrate the models classification performance. At inference, however, these distances are not available due to the lack of ground truth labels. To circumvent this by inferring the distance for every test sample, we propose to train a confidence model jointly with the classification model. We integrate this into training by merely learning from mis-classified training samples, which we show to be highly beneficial for effective learning. On multiple datasets and DNN architectures, we demonstrate that DBLE outperforms alternative single-model confidence calibration approaches. DBLE also achieves comparable performance with computationally-expensive ensemble approaches with lower computational cost and lower number of parameters.
77 - Yufei Cui , Ziquan Liu , Qiao Li 2021
Nested networks or slimmable networks are neural networks whose architectures can be adjusted instantly during testing time, e.g., based on computational constraints. Recent studies have focused on a nested dropout layer, which is able to order the n odes of a layer by importance during training, thus generating a nested set of sub-networks that are optimal for different configurations of resources. However, the dropout rate is fixed as a hyper-parameter over different layers during the whole training process. Therefore, when nodes are removed, the performance decays in a human-specified trajectory rather than in a trajectory learned from data. Another drawback is the generated sub-networks are deterministic networks without well-calibrated uncertainty. To address these two problems, we develop a Bayesian approach to nested neural networks. We propose a variational ordering unit that draws samples for nested dropout at a low cost, from a proposed Downhill distribution, which provides useful gradients to the parameters of nested dropout. Based on this approach, we design a Bayesian nested neural network that learns the order knowledge of the node distributions. In experiments, we show that the proposed approach outperforms the nested network in terms of accuracy, calibration, and out-of-domain detection in classification tasks. It also outperforms the related approach on uncertainty-critical tasks in computer vision.
In a real-world setting, visual recognition systems can be brought to make predictions for images belonging to previously unknown class labels. In order to make semantically meaningful predictions for such inputs, we propose a two-step approach that utilizes information from knowledge graphs. First, a knowledge-graph representation is learned to embed a large set of entities into a semantic space. Second, an image representation is learned to embed images into the same space. Under this setup, we are able to predict structured properties in the form of relationship triples for any open-world image. This is true even when a set of labels has been omitted from the training protocols of both the knowledge graph and image embeddings. Furthermore, we append this learning framework with appropriate smoothness constraints and show how prior knowledge can be incorporated into the model. Both these improvements combined increase performance for visual recognition by a factor of six compared to our baseline. Finally, we propose a new, extended dataset which we use for experiments.
The existence of noisy data is prevalent in both the training and testing phases of machine learning systems, which inevitably leads to the degradation of model performance. There have been plenty of works concentrated on learning with in-distributio n (IND) noisy labels in the last decade, i.e., some training samples are assigned incorrect labels that do not correspond to their true classes. Nonetheless, in real application scenarios, it is necessary to consider the influence of out-of-distribution (OOD) samples, i.e., samples that do not belong to any known classes, which has not been sufficiently explored yet. To remedy this, we study a new problem setup, namely Learning with Open-world Noisy Data (LOND). The goal of LOND is to simultaneously learn a classifier and an OOD detector from datasets with mixed IND and OOD noise. In this paper, we propose a new graph-based framework, namely Noisy Graph Cleaning (NGC), which collects clean samples by leveraging geometric structure of data and model predictive confidence. Without any additional training effort, NGC can detect and reject the OOD samples based on the learned class prototypes directly in testing phase. We conduct experiments on multiple benchmarks with different types of noise and the results demonstrate the superior performance of our method against state of the arts.
Existing uncertainty modeling approaches try to detect an out-of-distribution point from the in-distribution dataset. We extend this argument to detect finer-grained uncertainty that distinguishes between (a). certain points, (b). uncertain points bu t within the data distribution, and (c). out-of-distribution points. Our method corrects overconfident NN decisions, detects outlier points and learns to say ``I dont know when uncertain about a critical point between the top two predictions. In addition, we provide a mechanism to quantify class distributions overlap in the decision manifold and investigate its implications in model interpretability. Our method is two-step: in the first step, the proposed method builds a class distribution using Kernel Activation Vectors (kav) extracted from the Network. In the second step, the algorithm determines the confidence of a test point by a hierarchical decision rule based on the chi-squared distribution of squared Mahalanobis distances. Our method sits on top of a given Neural Network, requires a single scan of training data to estimate class distribution statistics, and is highly scalable to deep networks and wider pre-softmax layer. As a positive side effect, our method helps to prevent adversarial attacks without requiring any additional training. It is directly achieved when the Softmax layer is substituted by our robust uncertainty layer at the evaluation phase.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا