ﻻ يوجد ملخص باللغة العربية
This paper addresses the problem of microphone array generalization for deep-learning-based end-to-end multichannel speech enhancement. We aim to train a unique deep neural network (DNN) potentially performing well on unseen microphone arrays. The microphone array geometry shapes the networks parameters when training on a fixed microphone array, and thus restricts the generalization of the trained network to another microphone array. To resolve this problem, a single network is trained using data recorded by various microphone arrays of different geometries. We design three variants of our recently proposed narrowband network to cope with the agnostic number of microphones. Overall, the goal is to make the network learn the universal information for speech enhancement that is available for any array geometry, rather than learn the one-array-dedicated characteristics. The experiments on both simulated and real room impulse responses (RIR) demonstrate the excellent across-array generalization capability of the proposed networks, in the sense that their performance measures are very close to, or even exceed the network trained with test arrays. Moreover, they notably outperform various beamforming methods and other advanced deep-learning-based methods.
Speech-related applications deliver inferior performance in complex noise environments. Therefore, this study primarily addresses this problem by introducing speech-enhancement (SE) systems based on deep neural networks (DNNs) applied to a distribute
Speech enhancement has benefited from the success of deep learning in terms of intelligibility and perceptual quality. Conventional time-frequency (TF) domain methods focus on predicting TF-masks or speech spectrum, via a naive convolution neural net
The most recent deep neural network (DNN) models exhibit impressive denoising performance in the time-frequency (T-F) magnitude domain. However, the phase is also a critical component of the speech signal that is easily overlooked. In this paper, we
Conventional deep neural network (DNN)-based speech enhancement (SE) approaches aim to minimize the mean square error (MSE) between enhanced speech and clean reference. The MSE-optimized model may not directly improve the performance of an automatic
A method of binaural rendering from microphone array signals of arbitrary geometry is proposed. To reproduce binaural signals from microphone array recordings at a remote location, a spherical microphone array is generally used for capturing a soundf