ﻻ يوجد ملخص باللغة العربية
Given the proximity of many wireless users and their diversity in consuming local resources (e.g., data-plans, computation and even energy resources), device-to-device (D2D) resource sharing is a promising approach towards realizing a sharing economy. In the resulting networked economy, $n$ users segment themselves into sellers and buyers that need to be efficiently matched locally. This paper adopts an easy-to-implement greedy matching algorithm with distributed fashion and only sub-linear $O(log n)$ parallel complexity, which offers a great advantage compared to the optimal but computational-expensive centralized matching. But is it efficient compared to the optimal matching? Extensive simulations indicate that in a large number of practical cases the average loss is no more than $10%$, a far better result than the $50%$ loss bound in the worst case. However, there is no rigorous average-case analysis in the literature to back up such encouraging findings, which is a fundamental step towards supporting the practical use of greedy matching in D2D sharing. This paper is the first to present the rigorous average analysis of certain representative classes of graphs with random parameters, by proposing a new asymptotic methodology. For typical 2D grids with random matching weights we rigorously prove that our greedy algorithm performs better than $84.9%$ of the optimal, while for typical Erdos-Renyi random graphs we prove a lower bound of $79%$ when the graph is neither dense nor sparse. Finally, we use realistic data to show that our random graph models approximate well D2D sharing networks encountered in practice.
The sixth generation (6G) network must provide performance superior to previous generations in order to meet the requirements of emerging services and applications, such as multi-gigabit transmission rate, even higher reliability, sub 1 millisecond l
Small-scale clouds (SCs) often suffer from resource under-provisioning during peak demand, leading to inability to satisfy service level agreements (SLAs) and consequent loss of customers. One approach to address this problem is for a set of autonomo
Selecting optimal resources for submitting jobs on a computational Grid or accessing data from a data grid is one of the most important tasks of any Grid middleware. Most modern Grid software today satisfies this responsibility and gives a best-effor
Many applications like pointer analysis and incremental compilation require maintaining a topological ordering of the nodes of a directed acyclic graph (DAG) under dynamic updates. All known algorithms for this problem are either only analyzed for wo
In this paper, we study the resource allocation problem for a cooperative device-to-device (D2D)-enabled wireless caching network, where each user randomly caches popular contents to its memory and shares the contents with nearby users through D2D li