ﻻ يوجد ملخص باللغة العربية
We propose a self-supervised spatio-temporal matching method coined Motion-Aware Mask Propagation (MAMP) for semi-supervised video object segmentation. During training, MAMP leverages the frame reconstruction task to train the model without the need for annotations. During inference, MAMP extracts high-resolution features from each frame to build a memory bank from the features as well as the predicted masks of selected past frames. MAMP then propagates the masks from the memory bank to subsequent frames according to our motion-aware spatio-temporal matching module, also proposed in this paper. Evaluation on DAVIS-2017 and YouTube-VOS datasets show that MAMP achieves state-of-the-art performance with stronger generalization ability compared to existing self-supervised methods, i.e. 4.9% higher mean $mathcal{J}&mathcal{F}$ on DAVIS-2017 and 4.85% higher mean $mathcal{J}&mathcal{F}$ on the unseen categories of YouTube-VOS than the nearest competitor. Moreover, MAMP performs on par with many supervised video object segmentation methods. Our code is available at: url{https://github.com/bo-miao/MAMP}.
In this paper, we propose the differentiable mask-matching network (DMM-Net) for solving the video object segmentation problem where the initial object masks are provided. Relying on the Mask R-CNN backbone, we extract mask proposals per frame and fo
In this paper, we present a novel Motion-Attentive Transition Network (MATNet) for zero-shot video object segmentation, which provides a new way of leveraging motion information to reinforce spatio-temporal object representation. An asymmetric attent
This paper addresses the task of unsupervised video multi-object segmentation. Current approaches follow a two-stage paradigm: 1) detect object proposals using pre-trained Mask R-CNN, and 2) conduct generic feature matching for temporal association u
We present MoDist as a novel method to explicitly distill motion information into self-supervised video representations. Compared to previous video representation learning methods that mostly focus on learning motion cues implicitly from RGB inputs,
Advanced self-supervised visual representation learning methods rely on the instance discrimination (ID) pretext task. We point out that the ID task has an implicit semantic consistency (SC) assumption, which may not hold in unconstrained datasets. I