ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy-based Unknown Intent Detection with Data Manipulation

72   0   0.0 ( 0 )
 نشر من قبل Yawen Ouyang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unknown intent detection aims to identify the out-of-distribution (OOD) utterance whose intent has never appeared in the training set. In this paper, we propose using energy scores for this task as the energy score is theoretically aligned with the density of the input and can be derived from any classifier. However, high-quality OOD utterances are required during the training stage in order to shape the energy gap between OOD and in-distribution (IND), and these utterances are difficult to collect in practice. To tackle this problem, we propose a data manipulation framework to Generate high-quality OOD utterances with importance weighTs (GOT). Experimental results show that the energy-based detector fine-tuned by GOT can achieve state-of-the-art results on two benchmark datasets.



قيم البحث

اقرأ أيضاً

Modern wake word detection systems usually rely on neural networks for acoustic modeling. Transformers has recently shown superior performance over LSTM and convolutional networks in various sequence modeling tasks with their better temporal modeling power. However it is not clear whether this advantage still holds for short-range temporal modeling like wake word detection. Besides, the vanilla Transformer is not directly applicable to the task due to its non-streaming nature and the quadratic time and space complexity. In this paper we explore the performance of several variants of chunk-wise streaming Transformers tailored for wake word detection in a recently proposed LF-MMI system, including looking-ahead to the next chunk, gradient stopping, different positional embedding methods and adding same-layer dependency between chunks. Our experiments on the Mobvoi wake word dataset demonstrate that our proposed Transformer model outperforms the baseline convolution network by 25% on average in false rejection rate at the same false alarm rate with a comparable model size, while still maintaining linear complexity w.r.t. the sequence length.
Modern task-oriented dialog systems need to reliably understand users intents. Intent detection is most challenging when moving to new domains or new languages, since there is little annotated data. To address this challenge, we present a suite of pr etrained intent detection models. Our models are able to predict a broad range of intended goals from many actions because they are trained on wikiHow, a comprehensive instructional website. Our models achieve state-of-the-art results on the Snips dataset, the Schema-Guided Dialogue dataset, and all 3 languages of the Facebook multilingual dialog datasets. Our models also demonstrate strong zero- and few-shot performance, reaching over 75% accuracy using only 100 training examples in all datasets.
Varying data augmentation policies and regularization over the course of optimization has led to performance improvements over using fixed values. We show that population based training is a useful tool to continuously search those hyperparameters, w ithin a fixed budget. This greatly simplifies the experimental burden and computational cost of finding such optimal schedules. We experiment in speech recognition by optimizing SpecAugment this way, as well as dropout. It compares favorably to a baseline that does not change those hyperparameters over the course of training, with an 8% relative WER improvement. We obtain 5.18% word error rate on LibriSpeechs test-other.
158 - Chunxi Liu , Frank Zhang , Duc Le 2020
End-to-end automatic speech recognition (ASR) models with a single neural network have recently demonstrated state-of-the-art results compared to conventional hybrid speech recognizers. Specifically, recurrent neural network transducer (RNN-T) has sh own competitive ASR performance on various benchmarks. In this work, we examine ways in which RNN-T can achieve better ASR accuracy via performing auxiliary tasks. We propose (i) using the same auxiliary task as primary RNN-T ASR task, and (ii) performing context-dependent graphemic state prediction as in conventional hybrid modeling. In transcribing social media videos with varying training data size, we first evaluate the streaming ASR performance on three languages: Romanian, Turkish and German. We find that both proposed methods provide consistent improvements. Next, we observe that both auxiliary tasks demonstrate efficacy in learning deep transformer encoders for RNN-T criterion, thus achieving competitive results - 2.0%/4.2% WER on LibriSpeech test-clean/other - as compared to prior top performing models.
When deploying a Chinese neural text-to-speech (TTS) synthesis system, one of the challenges is to synthesize Chinese utterances with English phrases or words embedded. This paper looks into the problem in the encoder-decoder framework when only mono lingual data from a target speaker is available. Specifically, we view the problem from two aspects: speaker consistency within an utterance and naturalness. We start the investigation with an Average Voice Model which is built from multi-speaker monolingual data, i.e. Mandarin and English data. On the basis of that, we look into speaker embedding for speaker consistency within an utterance and phoneme embedding for naturalness and intelligibility and study the choice of data for model training. We report the findings and discuss the challenges to build a mixed-lingual TTS system with only monolingual data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا