ﻻ يوجد ملخص باللغة العربية
The flagship measurement of the JUNO experiment is the determination of the neutrino mass ordering. Here we revisit its prospects to make this determination by 2030, using the current global knowledge of the relevant neutrino parameters as well as current information on the reactor configuration and the critical parameters of the JUNO detector. We pay particular attention to the non-linear detector energy response. Using the measurement of $theta_{13}$ from Daya Bay, but without information from other experiments, we estimate the probability of JUNO determining the neutrino mass ordering at $ge$ 3$sigma$ to be 31% by 2030. As this probability is particularly sensitive to the true values of the oscillation parameters, especially $Delta m^2_{21}$, JUNOs improved measurements of $sin^2 theta_{12}$, $Delta m^2_{21}$ and $|Delta m^2_{ee}|$, obtained after a couple of years of operation, will allow an updated estimate of the probability that JUNO alone can determine the neutrino mass ordering by the end of the decade. Combining JUNOs measurement of $|Delta m^2_{ee}|$ with other experiments in a global fit will most likely lead to an earlier determination of the mass ordering.
Determination of the neutrino mass ordering (NMO) is one of the biggest priorities in the intensity frontier of high energy particle physics. To accomplish that goal a lot of efforts are being put together with the atmospheric, solar, reactor, and ac
We hereby illustrate and numerically demonstrate via a simplified proof of concept calculation tuned to the latest average neutrino global data that the combined sensitivity of JUNO with NOvA and T2K experiments has the potential to be the first full
One of the major open questions in particle physics is the issue of the neutrino mass ordering (NMO). The current data of the two long-baseline experiments NO$ u$A and T2K, interpreted in the standard 3-flavor scenario, provide a $sim2.4sigma$ indica
We consider the impact of neutral-current (NC) non-standard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in presence of NSI there is an exact degeneracy which makes it impossible to determine the neutri
We study the possibility of extracting the neutrino mass ordering at the future Deep Underground Neutrino Experiment using atmospheric neutrinos, which will be available before the muon neutrino beam starts being perational. The large statistics of t