Enhanced Meta-Displays Using Advanced Phase-Change Materials


الملخص بالإنكليزية

Structural colors generated due to light scattering from static all-dielectric metasurfaces have successfully enabled high-resolution, high-saturation, and wide-gamut color printing applications. Despite recent advances, most demonstrations of these structure-dependent colors lack post-fabrication tunability. This hinders their applicability for front-end dynamic display technologies. Phase-change materials (PCMs), with significant contrast of their optical properties between their amorphous and crystalline states, have demonstrated promising potentials in reconfigurable nanophotonics. Herein, we leverage tunable all-dielectric reflective metasurfaces made of newly emerged classes of low-loss optical PCMs, i.e., antimony trisulphide (Sb$_2$S$_3$) and antimony triselenide (Sb$_2$Se$_3$), with superb characteristics to realize switchable, high-saturation, high-efficiency and high-resolution dynamic meta-pixels. Exploiting polarization-sensitive building blocks, the presented meta-pixel can generate two different colors when illuminated by either one of two orthogonally polarized incident beams. Such degrees of freedom (i.e., material phase and polarization state) enable a single reconfigurable metasurface with fixed geometrical parameters to generate four distinct wide-gamut colors. We experimentally demonstrate, for the first time, an electrically-driven micro-scale display through the integration of phase-change metasurfaces with an on-chip heater formed by transparent conductive oxide. Our experimental findings enable a versatile platform suitable for a wide range of applications, including tunable full-color printing, enhanced dynamic displays, information encryption, and anti-counterfeiting.

تحميل البحث