ﻻ يوجد ملخص باللغة العربية
In this article we develop a general technique which takes a known characterization of a property for weighted backward shifts and lifts it up to a characterization of that property for a large class of operators on $L^p(X)$ which we call shift-like. The properties of interest include chaotic properties such as Li-Yorke chaos, hypercyclicity, frequent hypercyclicity as well as tame properties such as shadowing, expansivity and generalized hyperbolicity. Shift-like operators appear naturally as composition operators on $L^p(X)$ when the underlying space is a dissipative measure system. In the process of proving the main theorem, we prove some results concerning when a property is shared by a linear dynamical system and its factors.
Li-Yorke chaos is a popular and well-studied notion of chaos. Several simple and useful characterizations of this notion of chaos in the setting of linear dynamics were obtained recently. In this note we show that even simpler and more useful charact
A Banach space X has the SHAI (surjective homomorphisms are injective) property provided that for every Banach space Y, every continuous surjective algebra homomorphism from the bounded linear operators on X onto the bounded linear operators on Y is
Let $D^alpha, alpha>0$, be the Vladimirov-Taibleson fractional differentiation operator acting on complex-valued functions on a non-Archimedean local field. The identity $D^alpha D^{-alpha}f=f$ was known only for the case where $f$ has a compact supp
A unitary shift operator (GSO) for signals on a graph is introduced, which exhibits the desired property of energy preservation over both backward and forward graph shifts. For rigour, the graph differential operator is also derived in an analytical
Let $G=leftlangle S|R_{A}rightrangle $ be a semigroup with generating set $ S$ and equivalences $R_{A}$ among $S$ determined by a matrix $A$. This paper investigates the complexity of $G$-shift spaces by yielding the topological entropies. After reve