ﻻ يوجد ملخص باللغة العربية
Quantum technologies, i.e., technologies benefiting from the features of quantum physics such as objective randomness, superposition, and entanglement, have enabled an entirely different way of distributing and processing information. The enormous progress over the last decades has also led to an urgent need for young professionals and new educational programs. However, the lack of intuitive analogies and the necessity of complex mathematical frameworks often hinder teaching and learning efforts. Thus, novel education methods, such as those involving gamification, are promising supplements to traditional teaching methods. Here, we present a strategic card game in which the building blocks of a quantum computer can be experienced. While playing, participants start with the lowest quantum state, play cards to program a quantum computer, and aim to achieve the highest possible quantum state. By extending the game to high-dimensional quantum systems, i.e., systems that can take more than two possible values, and by developing different multi-player modes, the game can be used as an introduction to quantum computational tasks for students. As such, it can also be used in a classroom environment to increase the conceptual understanding, interest, and motivation of a student. Therefore, the presented game contributes to the ongoing efforts on gamifying quantum physics education with a particular focus on the counter-intuitive features which quantum computing is based on.
Precise measurement or perfect cloning of unknown quantum states is forbidden by the laws of quantum mechanics. Yet, quantum teleportation in principle allows for a faithful and disembodied transmission of unknown quantum states between distant quant
Teleportation is a quantum information processes without classical counterparts, in which the sender can disembodied transfer unknown quantum states to the receiver. In probabilistic teleportation through a partial entangled quantum channel, the tran
A transformative approach to addressing complex social-environmental problems warrants reexamining our most fundamental assumptions about sustainability and progress, including the entrenched imperative for limitless economic growth. Our global resou
This book is an attempt to help students transform all of the concepts of quantum mechanics into concrete computer representations, which can be constructed, evaluated, analyzed, and hopefully understood at a deeper level than what is possible with m
In economics duopoly is a market dominated by two firms large enough to influence the market price. Stackelberg presented a dynamic form of duopoly that is also called `leader-follower model. We give a quantum perspective on Stackelberg duopoly that