ﻻ يوجد ملخص باللغة العربية
Tubal scalars are usual vectors, and tubal matrices are matrices with every element being a tubal scalar. Such a matrix is often recognized as a third-order tensor. The product between tubal scalars, tubal vectors, and tubal matrices can be done by the powerful t-product. In this paper, we define nonnegative/positive/strongly positive tubal scalars/vectors/matrices, and establish several properties that are analogous to their matrix counterparts. In particular, we introduce the irreducible tubal matrix, and provide two equivalent characterizations. Then, the celebrated Perron-Frobenius theorem is established on the nonnegative irreducible tubal matrices. We show that some conclusions of the PF theorem for nonnegative irreducible matrices can be generalized to the tubal matrix setting, while some are not. One reason is the defined positivity here has a different meaning to its usual sense. For those conclusions that can not be extended, weaker conclusions are proved. We also show that, if the nonnegative irreducible tubal matrix contains a strongly positive tubal scalar, then most conclusions of the matrix PF theorem hold.
In this paper, we mainly focus on how to generalize some conclusions from nonnegative irreducible tensors to nonnegative weakly irreducible tensors. To do so, a basic and important lemma is proven using new tools. First, we give the definition of sto
We look at periodic Jacobi matrices on trees. We provide upper and lower bounds on the gap of such operators analogous to the well known gap in the spectrum of the Laplacian on the upper half-plane with hyperbolic metric. We make some conjectures abo
In further pursuit of the diagonalizable emph{real nonnegative inverse eigenvalue problem} (RNIEP), we study the relationship between the emph{row cone} $mathcal{C}_r(S)$ and the emph{spectracone} $mathcal{C}(S)$ of a Perron similarity $S$. In the pr
Algebras generated by strictly positive matrices are described up to similarity, including the commutative, simple, and semisimple cases. We provide sufficient conditions for some block diagonal matrix algebras to be generated by a set of nonnegative
The aim of this manuscript is to understand the dynamics of products of nonnegative matrices. We extend a well known consequence of the Perron-Frobenius theorem on the periodic points of a nonnegative matrix to products of finitely many nonnegative m